Publications by authors named "Laszlo G Radvanyi"

Background: The adoptive transfer of tumor-infiltrating lymphocytes (TIL) has demonstrated robust efficacy in metastatic melanoma patients. Tumor antigen-loaded dendritic cells (DCs) are believed to optimally activate antigen-specific T lymphocytes. We hypothesized that the combined transfer of TIL, containing a melanoma antigen recognized by T cells 1 (MART-1) specific population, with MART-1-pulsed DC will result in enhanced proliferation and prolonged survival of transferred MART-1 specific T cells in vivo ultimately leading to improved clinical responses.

View Article and Find Full Text PDF

COVID-19 has halted research around the globe and forced researchers out of their laboratories. Non-emergency medical appointments were canceled. Ongoing clinical trials were challenged to create new modes of operation while public pressure mounted to find therapeutic options against COVID-19.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has consistently demonstrated clinical efficacy in metastatic melanoma. Recent widespread use of checkpoint blockade has shifted the treatment landscape, raising questions regarding impact of these therapies on response to TIL and appropriate immunotherapy sequence. Seventy-four metastatic melanoma patients were treated with autologous TIL and evaluated for clinical response according to irRC, overall survival, and progression-free survival.

View Article and Find Full Text PDF

In this study, we address one of the major critiques for tumor-infiltrating lymphocyte (TIL) therapy-the time needed for proper expansion of a suitable product. We postulated that T-cell receptor activation in the first phase of expansion combined with an agonistic stimulation of CD137/4-1BB and interleukin-2 would favor preferential expansion of CD8 TIL. Indeed, this novel 3-signal approach for optimal T-cell activation resulted in faster and more consistent expansion of CD8CD3 TIL.

View Article and Find Full Text PDF

Natural killer (NK) cells are a highly heterogeneous population of innate lymphocytes that constitute our first line of defense against several types of tumors and microbial infections. Understanding the heterogeneity of these lymphocytes requires the ability to integrate their underlying phenotype with dynamic functional behaviors. We have developed and validated a single-cell methodology that integrates cellular phenotyping and dynamic cytokine secretion based on nanowell arrays and bead-based molecular biosensors.

View Article and Find Full Text PDF

Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%-50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8 TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described.

View Article and Find Full Text PDF

The interaction between tumor and the immune system is still poorly understood. Significant clinical responses have been achieved in cancer patients treated with antibodies against the CTLA4 and PD-1/PD-L1 checkpoints; however, only a small portion of patients responded to the therapies, indicating a need to explore additional co-inhibitory molecules for cancer treatment. B7-H3, a member of the B7 superfamily, was previously shown by us to inhibit T-cell activation and autoimmunity.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) highly infiltrated with CD8 tumor-infiltrating lymphocytes (TIL) has been associated with improved prognosis. This observation led us to hypothesize that CD8 TIL could be utilized in autologous adoptive cell therapy for TNBC, although this concept has proven to be challenging, given the difficulty in expanding CD8 TILs in solid cancers other than in melanoma. To overcome this obstacle, we used an agonistic antibody (urelumab) to a TNFR family member, 4-1BB/CD137, which is expressed by recently activated CD8 T cells.

View Article and Find Full Text PDF

Background: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements.

Methods: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts.

View Article and Find Full Text PDF

High dose (HD) IL-2 therapy has been used for almost two decades as an immunotherapy for metastatic melanoma. IL-2 promotes the proliferation and effector function of T and NK cells through the tyrosine phosphorylation and activation of signal transducer and activator of transcription factors (STAT), especially STAT5. However, whether any defects in STAT activation exist in T and NK lymphocytes from melanoma patients are under debate.

View Article and Find Full Text PDF

Adoptive transfer of autologous expanded tumor-infiltrating lymphocytes (TIL) is a highly successful cell therapy approach in the treatment of late-stage melanoma. Notwithstanding the success of this therapy, only very few centers worldwide can provide it. To make this therapy broadly available, one of the major obstacles to overcome is the complexity of culturing the TIL.

View Article and Find Full Text PDF

Autologous adoptive T-cell therapies have made tremendous strides over the last few years with excitement currently being generated by technologies that can reprogram T-cell specificities toward any desired antigen including chimeric antigen receptors and recombinant T-cell receptors. Time will tell whether these new genetically engineered T-cell technologies will be effective as advertised, especially in solid tumors, considering the limited availability of specific antigens and the difficulty in managing the unpredictable on-target, off-tissue toxicities. However, a form of T-cell therapy that has been utilized in patients more than any other and has left a lasting mark in the field is tumor-infiltrating lymphocytes (TILs).

View Article and Find Full Text PDF

In a recent adoptive cell therapy (ACT) clinical trial using autologous tumor-infiltrating lymphocytes (TILs) in patients with metastatic melanoma, we found an association between CD8 T cells expressing the inhibitory receptor B- and T-lymphocyte attenuator (BTLA) and clinical response. Here, we further characterized this CD8BTLA TIL subset and their CD8BTLA counterparts. We found that the CD8 BTLA TILs had an increased response to IL-2, were less-differentiated effector-memory (T) cells, and persisted longer after infusion.

View Article and Find Full Text PDF

Unlabelled: Patients with leptomeningeal disease (LMD) from melanoma have very poor outcomes and few treatment options. We present a case of intrathecal (i.t.

View Article and Find Full Text PDF

Oncogene activation in tumor cells induces broad and complex cellular changes that contribute significantly to disease initiation and progression. In melanoma, oncogenic BRAF(V600E) has been shown to drive the transcription of a specific gene signature that can promote multiple mechanisms of immune suppression within the tumor microenvironment. We show here that BRAF(V600E) also induces rapid internalization of MHC class I (MHC-I) from the melanoma cell surface and its intracellular sequestration within endolysosomal compartments.

View Article and Find Full Text PDF

Tumor-associated antigens (TAAs) have been identified in many malignant tumors. Within these TAAs are peptide sequences that bind major histocompatibility complex (MHC) class I and class II molecules recognized by T cells triggering antigen-specific CD8+ cytotoxic T-cell and CD4+ T-helper cell responses. Efforts to develop vaccines for breast cancer have been underway for more than 20 years, including peptide and whole inactivated tumor cell vaccines as well as antigen-loaded dendritic cell vaccines.

View Article and Find Full Text PDF

Purpose: Adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL) is a therapy for metastatic melanoma with response rates of up to 50%. However, the generation of the TIL transfer product is challenging, requiring pooled allogeneic normal donor peripheral blood mononuclear cells (PBMC) used in vitro as "feeders" to support a rapid-expansion protocol. Here, we optimized a platform to propagate TIL to a clinical scale using K562 cells genetically modified to express costimulatory molecules such as CD86, CD137-ligand, and membrane-bound IL-15 to function as artificial antigen-presenting cells (aAPC) as an alternative to using PBMC feeders.

View Article and Find Full Text PDF

In order to develop a new tool for diagnosis of breast cancer based on autoantibodies against a panel of biomarkers, a clinical trial including blood samples from 507 subjects was conducted. All subjects showed a breast abnormality on exam or breast imaging and final biopsy pathology of either breast cancer patients or healthy controls. Using an enzyme-linked immunosorbent assay, the samples were tested for autoantibodies against a predetermined number of biomarkers in various models that were used to determine a diagnosis, which was compared to the clinical status.

View Article and Find Full Text PDF

Co-stimulation through members of the tumor necrosis factor receptor (TNFR) family appears to be critical for the generation of T cells with optimal effector-memory properties for adoptive cell therapy. Our work suggests that continuous 4-1BB/CD137 co-stimulation is required for the expansion of T cells with an optimal therapeutic profile and that the administration of 4-1BB agonists upon adoptive cell transfer further improves antitumor T-cell functions.

View Article and Find Full Text PDF

Purpose: Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors.

View Article and Find Full Text PDF

Incomplete differentiation of CD8+ cytotoxic T-lymphocytes (CTLs) in the tumor microenvironment is associated with cancer progression. We describe a new type of tumor-infiltrating CD8+CD57+ T cell in cancer with hybrid phenotypic and functional properties of both an early effector-memory cell and a terminally-differentiated effector cell. These cells behave as incompletely-differentiated CTLs.

View Article and Find Full Text PDF

PR1 is a HLA-A2-restricted peptide that has been targeted successfully in myeloid leukemia with immunotherapy. PR1 is derived from the neutrophil granule proteases proteinase 3 (P3) and neutrophil elastase (NE), which are both found in the tumor microenvironment. We recently showed that P3 and NE are taken up and cross-presented by normal and leukemia-derived APCs, and that NE is taken up by breast cancer cells.

View Article and Find Full Text PDF

Purpose: Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing phase II clinical trial testing the efficacy of ACT using TIL in patients with metastatic melanoma and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response.

Experimental Design: Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL, followed by two cycles of high-dose interleukin (IL)-2 therapy.

View Article and Find Full Text PDF

Manipulating the immune system in order to induce clinically relevant responses against cancer is a longstanding goal. Interventions to enhance tumor-specific immunity through vaccination, sustaining effector T cell activation, or increasing the numbers of tumor-specific T cells using ex vivo expansion, have all resulted in clinical successes. Here, we examine recent clinical advances and major ongoing studies in the field of cancer immunotherapy.

View Article and Find Full Text PDF