I introduce two new methods, QFVina and QFVinardo, for protein-ligand docking that leverage precomputed high-quality conformational libraries with QM-optimized geometries and DFT-D4-based conformational rankings and strain energies. These methods provide greater accuracy in docking-based virtual screening by addressing the inaccuracies in intramolecular relative energies of conformations, a critical component often misrepresented in flexible ligand docking calculations. I demonstrate that numerous force field-based methods widely used today exhibit substantial errors in conformational relative energies, and that it is unrealistic to expect better accuracy from the faster scoring functions typically employed in docking.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
August 2016
A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
August 2016
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations.
View Article and Find Full Text PDFA Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs.
View Article and Find Full Text PDFCurrently the Protein Data Bank (PDB) contains over 18,000 structures that contain a metal ion including Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Cd, Ir, Pt, Au, and Hg. In general, carrying out classical molecular dynamics (MD) simulations of metalloproteins is a convoluted and time consuming process. Herein, we describe MCPB (Metal Center Parameter Builder), which allows one, to conveniently and rapidly incorporate metal ions using the bonded plus electrostatics model (Hoops et al.
View Article and Find Full Text PDFJ Phys Chem A
September 2009
Accurate benchmark calculations of gas-phase basicities of small molecules are presented and compared with available experimental results. The optimized geometries and thermochemical analyses were obtained from MP2/aug-cc-pVTZ calculations. Two different ab initio electron-correlated methods MP2 and CCSD(T) were employed for subsequent gas-phase basicity calculations, and the single-point energies were extrapolated to the complete basis set (CBS) limit.
View Article and Find Full Text PDFAccurate MP2 and CCSD(T) complete basis set (CBS) interaction energy curves (14 points for each curve) have been obtained for 20 of the dimers reported in the S22 set and analytical Morse curves have been fitted that can be used in developing updated density functional theory (DFT) and force field models. The magnitude and the effect of the basis set superposition error (BSSE) were carefully investigated. We found that going up to aug-cc-pVDZ and aug-cc-pVTZ basis sets is enough to obtain accurate CBS MP2 energies when BSSE corrected values are used but aug-cc-pVTZ and aug-cc-pVQZ basis sets are needed when the BSSE uncorrected total energies are used in CBS extrapolations.
View Article and Find Full Text PDFDispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study.
View Article and Find Full Text PDFAn accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method.
View Article and Find Full Text PDFA new algorithm is presented to improve the efficiency of the computation of exchange-correlation contributions, a major time-consuming step in a density functional theory (DFT) calculation. The new method, called multiresolution exchange correlation (mrXC), takes advantage of the variation in resolution among the Gaussian basis functions and shifts the calculation associated with low-resolution (smooth) basis function pairs to an even-spaced cubic grid. The cubic grid is much less dense in the vicinity of the nuclei than the atom-centered grid and the computation on the former is shown to be much more efficient than on the latter.
View Article and Find Full Text PDFCoulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem.
View Article and Find Full Text PDF