In this comment, the thermodynamic analysis of the stability of nanobubbles is discussed in reference to the recent paper by Manning (G. S. Manning, On the Thermodynamic Stability of Bubbles,Immiscible Droplets, and Cavities, Phys.
View Article and Find Full Text PDFWater containing suspended nanobubbles is utilized in various applications. The observed lifetime of suspended nanobubbles is several weeks, whereas, according to the classical theory of bubble stability, a nanosized bubble should dissolve within microseconds. Explanations for the longevity of nanosized bubbles have been proposed but none of them has gained general acceptance.
View Article and Find Full Text PDFInterfacial energy γ of a liquid-liquid or solid-liquid system is of paramount importance in colloid and interface science and its applications. To assess the dependence of γ on the surface energies γ and γ of two materials in contact, Girifalco and Good proposed their venerable equation involving the interfacial interaction parameter ϕ. Subsequently, values of ϕ have been experimentally determined for various material pairs.
View Article and Find Full Text PDFWhen a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e.
View Article and Find Full Text PDFYoung's construction for a contact angle at a three-phase intersection forms the basis of all fields of science that involve wetting and capillary action. We find compelling evidence from recent experimental results on the deformation of a soft solid at the contact line, and displacement of an elastic wire immersed in a liquid, that Young's equation can only be interpreted by surface energies, and not as a balance of surface tensions. It follows that the a priori variable in finding equilibrium is not the position of the contact line, but the contact angle.
View Article and Find Full Text PDFThis work demonstrates the feasibility of superhydrophilic polyelectrolyte brush coatings for anti-icing applications. Five different types of ionic and nonionic polymer brush coatings of 25-100 nm thickness were formed on glass substrates using silane chemistry for surface premodification followed by polymerization via the SI-ATRP route. The cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride] and the anionic [poly(3-sulfopropyl methacrylate), poly(sodium methacrylate)] polyelectrolyte brushes were further exchanged with H+, Li+, Na+, K+, Ag+, Ca2+, La3+, C16N+, F-, Cl-, BF4-, SO4(2-), and C12SO3- ions.
View Article and Find Full Text PDF