We herein present broadly useful, readily available and nonintegral hydroxylamine linkers for the routine solid-phase synthesis of hydroxamic acids. The developed protocols enable the efficient synthesis and release of a wide range of hydroxamic acids from various resins, relying on high control and flexibility with respect to reagents and synthetic processes. A trityl-based hydroxylamine linker was used to synthesize a library of peptide hydroxamic acids.
View Article and Find Full Text PDFA synthetic strategy for the synthesis of chiral tetrahydrocarbazoles (THCAs) has been developed. The strategy relies on two types of 6-exo-trig cyclization of 3-substituted indole substrates. Enantioselective domino Friedel-Crafts-type reactions leading to THCAs can be catalyzed by chiral phosphoric acid derivatives (with up to >99% ee), and the first examples of exocyclic Pictet-Spengler reactions to form THCAs are reported.
View Article and Find Full Text PDFPhotoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo-crosslinking motif and a peptide stapling reagent. Using double-click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo-crosslinking amino acid.
View Article and Find Full Text PDFA straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl(2)](2)/MsOH or RuCl(3)·xH(2)O/phosphine (phosphine = PPh(3) or xantphos). The reaction does not require any stoichiometric additives and only produces water and dihydrogen as byproducts.
View Article and Find Full Text PDF