Publications by authors named "Lasne J"

The search for organic molecules at the surface of Mars is a key objective in astrobiology, given that many organic compounds are possible biosignatures and their presence is of interest with regard to the habitability of Mars. Current environmental conditions at the martian surface are harsh and affect the stability of organic molecules. For this reason, and because current and future Mars rovers collect samples from the upper surface layer, it is important to assess the fate of organic molecules under the conditions at the martian surface.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents absorption spectra of N2O films across a temperature range of 33 K to 64 K, examining how deposition temperature affects absorption energy.
  • The analysis indicates that the observed shifts are linked to temperature-driven spontaneously electric fields in the films, suggesting that excitons are influenced by these fields up to certain temperatures.
  • Results highlight a potential blockade effect on excitons due to structural defects and provide insights into the regular periodicity of the films, revealing structural changes near the known phase transition at around 47 K to 48 K.
View Article and Find Full Text PDF
Article Synopsis
  • Wannier-Mott excitons, crucial for optical and photovoltaic traits in semiconductors, have been identified in solid carbon monoxide (CO) despite its high band gap and low permittivity.
  • The discovery is based on how slight changes in deposition temperature can significantly alter the electronic absorption spectra of solid CO, suggesting a strong temperature dependency.
  • This phenomenon is explained by the formation of electrics fields in CO films and an electrostatic model that connects temperature shifts to the Stark effect, clarifying previous mysteries regarding vacuum ultraviolet spectra sensitivity.
View Article and Find Full Text PDF

In 1976, the Viking landers carried out the most comprehensive search for organics and microbial life in the martian regolith. Their results indicate that Mars' surface is lifeless and, surprisingly, depleted in organics at part-per-billion levels. Several biology experiments on the Viking landers gave controversial results that have since been explained by the presence of oxidizing agents on the surface of Mars.

View Article and Find Full Text PDF

Reflection absorption infrared spectroscopy (RAIRS) is used to show that when 20 monolayer (ML) films of solid CO are laid down on solid water substrates at 20 to 24 K, the films polarize spontaneously. CO films were prepared on three types of water ice: porous amorphous solid water (CO-pASW), crystalline water (CO-CSW) and compact amorphous solid water (CO-cASW) with corresponding fields of 3.76 ± 0.

View Article and Find Full Text PDF

Reflection-absorption infrared spectroscopy (RAIRS) is shown to provide a means of observing the spontelectric phase of matter, the defining characteristic of which is the occurrence of a spontaneous and powerful static electric field within a film of material. The presence of such a field is demonstrated here through the study of longitudinal-transverse optical splitting in RAIR spectra in films of carbon monoxide, based upon the deposition temperature dependence of this splitting. Analysis of spectral data, in terms of the vibrational Stark effect, allows the measurement of the polarization of spontelectric films, showing for example that solid carbon monoxide at 20 K may maintain a spontelectric field of 3.

View Article and Find Full Text PDF

Reflection-absorption infrared spectroscopy (RAIRS) of nitrous oxide (N2O) thin films is shown to provide an independent means of observing the spontelectric state, the first new structural phase of matter, with unique electrical properties, to have emerged in decades. The presence of a spontaneous and powerful static electric field within the film, the defining characteristic of spontelectric solids, is demonstrated through observations of longitudinal-transverse optical (LO-TO) splitting in RAIR spectra, using an analysis based on the vibrational Stark effect. In particular the dependence of the LO-TO splitting on the film deposition temperature may be wholly attributed to the known temperature dependence of the spontelectric field.

View Article and Find Full Text PDF

Although several research groups have studied the formation of H2 on interstellar dust grains using surface science techniques, few have explored the formation of more complex molecules. A small number of these reactions produce molecules that remain on the surface of interstellar dust grains and, over time, lead to the formation of icy mantles. The most abundant of these species within the ice is H2O and is of particular interest as the observed molecular abundance cannot be accounted for using gas-phase chemistry alone.

View Article and Find Full Text PDF

The recent discovery of a new class of solids displaying bulk spontaneous electric fields as high as 10(8) V m(-1), so-called 'spontelectrics', poses fundamental and unresolved problems in solid state physics. The purpose of the present work is to delve more deeply into the nature of the interactions which give rise to the spontelectric effect in films of nitrous oxide (N2O), by observing the variation of the spontaneous field as the N2O molecules are physically removed from one another by dilution in Xe. Data, obtained using the ASTRID storage ring, are presented for films diluted by factors ξ = Xe/N2O of 0.

View Article and Find Full Text PDF

The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C.

View Article and Find Full Text PDF

Detailed investigation of the adsorption of acetaldehyde on I(h) ice is performed under tropospheric conditions by means of grand canonical Monte Carlo computer simulations and compared to infrared spectroscopy measurements. The experimental and simulation results are in a clear accordance with each other. The simulations indicate that the adsorption process follows Langmuir behavior in the entire pressure range of the vapor phase of acetaldehyde.

View Article and Find Full Text PDF

Oxygenated volatile organic compounds (OVOCs) influence the oxidative properties of the atmosphere, and their transport from the ground may occur by scavenging by the HNO(3)-rich supercooled water droplets found in polluted convective air masses. With infrared spectroscopy, we have studied the interactions of four typical atmospheric OVOCs (acetone, hydroxyacetone, acetaldehyde and benzaldehyde) with model surfaces of water ice and of trihydrated nitric acid (NAT) ice. We show that these molecules weakly adsorb on water ice and NAT by hydrogen bonding.

View Article and Find Full Text PDF

The reaction of HCl on water ice provides a simple case for understanding dissociation and proton transfer in this non-optimal, incomplete solvation environment, playing a central role in atmospheric chemistry. This reaction has been repeatedly reported as thermally dependent, whereas the theoretical models predict a spontaneous dissociation. We examine the adsorption of HCl on ice at low temperature (50 K and 90 K) via a combination of near-edge X-ray absorption spectroscopy (NEXAFS) at the chlorine L-edge, photoemission (XPS and UPS), and reflection-adsorption infrared spectroscopy (FT-RAIRS).

View Article and Find Full Text PDF

Soft X-ray induced chemistry of H(2)O, CO and CH(3)OH and the effects of the water and nitric acid hydrate (HNO(3).1.65H(2)O) matrix on the photochemistry of CO and CH(3)OH have been investigated using NEXAFS spectroscopy.

View Article and Find Full Text PDF

A vapor-deposited NH(3) ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N(2), whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV.

View Article and Find Full Text PDF

UV-irradiated methanol (CH3OH) in water ice at 3 K has been investigated with infrared spectroscopy and compared with pure methanol. The main byproducts detected are formaldehyde (H2CO), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and ethylene glycol (C2H4(OH)2). The production of H2CO, CO2, and CO is enhanced in water ice, resulting from cross reactions between the byproducts of methanol with those of water (OH and H2O2).

View Article and Find Full Text PDF

Circadian rhythms of cortisol were studied in 10 patients. This study was made shortly after the burn and for a short period of one or two days maximum in 9 patients. Blood level measurements of cortisone were made in 4 patients.

View Article and Find Full Text PDF