Publications by authors named "Lasantha Korala"

Synthesis of efficient photocatalysts based on CdS nanomaterials for oxidative decomposition of organic effluents typically focuses on (a) enhancement of surface area of the catalysts and (b) promotion of the separation of photogenerated electron-hole pairs. CdS aerogel, which are synthesized by simple sol-gel assembly of discrete nanocrystals (NCs) into a porous network followed by supercritical drying, could provide higher surface area for photocatalytic reactions along with facile charge separation due to direct contact between NCs via covalent bonding. We evaluated the efficiency of CdS aerogel materials for degradation of organic dyes using methylene blue (MB) and methyl orange (MO) as test cases.

View Article and Find Full Text PDF

Poor charge transport in Cu2ZnSnS4 (CZTS) nanocrystal (NC) thin films presents a great challenge in the fabrication of solar cells without postannealing treatments. We introduce a novel approach to facilitate the charge carrier hopping between CZTS NCs by growing a stoichiometric Cu2Se shell that can be oxidized to form a conductive Cu2-xSe phase when exposed to air. The CZTS/Cu2Se core/shell NCs with varying numbers of shell monolayers were synthesized by the successive ionic layer adsorption and reaction (SILAR) method, and the variation in structural and optical properties of the CZTS NCs with varying shell thicknesses was investigated.

View Article and Find Full Text PDF

Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) nonradiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles.

View Article and Find Full Text PDF

CdSe(ZnS) core(shell) aerogels were prepared from the assembly of quantum dots into mesoporous colloidal networks. The sol-gel method produces inorganic particle interfaces with low resistance to electrical transport while maintaining quantum-confinement. The photoelectrochemical properties of aerogels and their composites with poly(3-hexylthiophene) are reported for the first time.

View Article and Find Full Text PDF

Transparent CdSe(ZnS) sol-gel materials have potential uses in optoelectronic applications such as light emitting diodes (LEDs) due to their strong luminescence properties and the potential for charge transport through the prewired nanocrystal (NC) network of the gel. However, typical syntheses of metal chalcogenide gels yield materials with poor transparency. In this work, the mechanism and kinetics of aggregation of two sizes of CdSe(ZnS) core(shell) NCs, initiated by removal of surface thiolate ligands using tetranitromethane (TNM) as an oxidant, were studied by means of time-resolved dynamic light scattering (TRDLS); the characteristics of the resultant gels were probed by optical absorption, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications.

View Article and Find Full Text PDF