In this work, a slurry iron aluminide-coated ferritic steel SVM12 was subjected to a laboratory experiment mimicking superheater corrosion in a biomass-fired power boiler. The samples were exposed under model Cl-rich biomass conditions, in a KCl + O + HO environment at 600 °C for 168, 2000, and 8000 h. The morphology of corrosion and the composition of the oxide scale and the coating were investigated by a combination of advanced analytical techniques such as FESEM/EDS, SEM/EBSD, and XRD.
View Article and Find Full Text PDFNeutron reflectivity (NR) is potentially a powerful tool for characterizing chemical and morphological changes in thin films and at buried interfaces in corrosion science. While the scope of NR is limited by its inherent demands for low surface roughness and high sample planarity, these drawbacks are compensated for by the unique ability to detect light elements and distinguish between isotopes. Furthermore, the generally weak absorption of neutrons by matter allows the use of bulky sample environments and experiments.
View Article and Find Full Text PDF