Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI).
View Article and Find Full Text PDFLanthanide-doped nanoparticles (LnNPs) possess unique optical properties and are employed in various optoelectronic and bioimaging applications. One fundamental limitation of LnNPs is their low absorption cross-section. This hurdle can be overcome through surface modification with organic chromophores with large absorption cross-sections.
View Article and Find Full Text PDFSinglet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications.
View Article and Find Full Text PDFAn intermolecular coupling of primary alcohols and organotriflates has been developed to provide ketones by the action of a Ni(0) catalyst. This oxidative transformation is proposed to occur by the union of three distinct catalytic cycles. Two competitive oxidation processes generate aldehyde in situ via hydrogen transfer oxidation or (pseudo)dehalogenation pathways.
View Article and Find Full Text PDF