Publications by authors named "Lars Tebbe"

Inherited retinal degeneration (IRD) can cause a wide range of different forms of vision loss and blindness, and in spite of extensive advancements in gene therapy research, therapeutic approaches for targeting IRDs are still lacking. We have recently developed an approach for the intravitreal co-delivery of hyaluronic-acid nanospheres (HA-NSs) with sulfotyrosine (ST), effectively reaching the outer retina from the vitreal cavity. Here, our goal was to understand whether DNA-filled HA-NSs could generate gene expression in the outer retina.

View Article and Find Full Text PDF

The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) superfamily plays a pivotal role in cellular trafficking by facilitating membrane fusion events. These SNARE proteins, including syntaxins, assemble into complexes that actively facilitate specific membrane fusion events. Syntaxins, as integral components of the SNARE complex, play a crucial role in initiating and regulating these fusion activities.

View Article and Find Full Text PDF

Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.

View Article and Find Full Text PDF

Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.

View Article and Find Full Text PDF

Dysregulation of retinal metabolism is emerging as one of the major reasons for many inherited retinal diseases (IRDs), a leading cause of blindness worldwide. Thus, the identification of a common regulator that can preserve or revert the metabolic ecosystem to homeostasis is a key step in developing a treatment for different forms of IRDs. Riboflavin (RF) and its derivatives (flavins), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are essential cofactors for a wide range of cellular metabolic processes; hence, they are particularly critical in highly metabolically active tissues such as the retina.

View Article and Find Full Text PDF

Prph2 is a photoreceptor-specific tetraspanin with an essential role in the structure and function of photoreceptor outer segments. PRPH2 mutations cause a multitude of retinal diseases characterized by the degeneration of photoreceptors as well as defects in neighboring tissues such as the RPE. While extensive research has analyzed photoreceptors, less attention has been paid to these secondary defects.

View Article and Find Full Text PDF

Trafficking of photoreceptor membrane proteins from their site of synthesis in the inner segment (IS) to the outer segment (OS) is critical for photoreceptor function and vision. Here we evaluate the role of syntaxin 3 (STX3), in trafficking of OS membrane proteins such as peripherin 2 (PRPH2) and rhodopsin. Photoreceptor-specific knockouts [ and ] exhibited rapid, early-onset photoreceptor degeneration and functional decline characterized by structural defects in IS, OS, and synaptic terminals.

View Article and Find Full Text PDF

Peripherin 2 (Prph2) is a photoreceptor-specific tetraspanin protein present in the outer segment (OS) rims of rod and cone photoreceptors. It shares many common features with other tetraspanins, including a large intradiscal loop which contains several cysteines. This loop enables Prph2 to associate with itself to form homo-oligomers or with its homologue, rod outer segment membrane protein 1 (Rom1) to form hetero-tetramers and hetero-octamers.

View Article and Find Full Text PDF

Despite the first successful applications of nonviral delivery vectors for small interfering RNA in the treatment of illnesses, such as the respiratory syncytial virus infection, the preparation of a clinically suitable, safe, and efficient delivery system still remains a challenge. In this study, we tackle the drawbacks of the existing systems by a combined experimental-computational in-depth investigation of the influence of the polymer architecture over the binding and transfection efficiency. For that purpose, a library of diblock copolymers with a molar mass of 30 kDa and a narrow dispersity (Đ < 1.

View Article and Find Full Text PDF

Purpose: This study sought to characterize the ophthalmic and extraocular phenotype in patients with known and novel KIF11 mutations.

Methods: Four patients (3, 5, 36, and 38 years of age, on father-daughter constellation) from three unrelated families were characterized by retinal examination including multimodal retinal imaging, investigation for syndromic disease manifestations, and targeted next-generation sequencing. The subcellular localization of Kif11 in the retina was analyzed by light and electron microcopy.

View Article and Find Full Text PDF

Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses.

View Article and Find Full Text PDF

Background: Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures.

Results: Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome.

View Article and Find Full Text PDF

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT.

View Article and Find Full Text PDF

We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.

View Article and Find Full Text PDF