Publications by authors named "Lars S Jensen"

Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues.

View Article and Find Full Text PDF

Life cycle assessment (LCA) was applied to evaluate duckweed ponds and constructed wetlands as polishing steps in pig manure liquid fraction treatment. Using nitrification-denitrification (NDN) of the liquid fraction as the starting point, the LCA compared direct land application of the NDN effluent with different combinations of duckweed ponds, constructed wetlands and discharge into natural waterbodies. Duckweed ponds and constructed wetlands are viewed as a viable tertiary treatment option and potential remedy for nutrient imbalances in areas of intense livestock farming, such as in Belgium.

View Article and Find Full Text PDF

Current political focus on promoting circular economy in the European Union drives great interest in developing and using more biobased fertilizers (BBFs, most often waste or residue-derived). Many studies have been published on environmental emissions, including ammonia (NH) volatilization from manures, but there have only been a few such studies on BBFs. Ammonia volatilization from agriculture poses a risk to the environment and human health, causing pollution in natural ecosystems when deposited and formation of fine particulate matter (PM).

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen fertilization significantly increases nitrous oxide (NO) emissions, but using nitrification inhibitors (NIs) like DMPP can help reduce these emissions and improve nutrient efficiency in crops.
  • The study measured NO emissions from spring barley and spring oilseed rape using both manual and automatic methods, finding that while NI application generally reduced NO emissions, the effects varied significantly based on crop type and measurement methods.
  • Long-term research and continuous monitoring are necessary to better understand the effectiveness of NIs in reducing NO emissions across different agricultural conditions and practices.
View Article and Find Full Text PDF

The EU nitrogen expert panel (EUNEP) has proposed nitrogen-based indicators for farm productivity (N output), efficiency (NUE) and environmental emissions (N surplus). This model-based study (using the Daisy model) was carried out, i) to study the effects of soil type, soil organic matter (SOM), cropping pre-histories varying in C input, 3-to-4 manure-to-mineral N proportions and ten crop rotations on the N-based indicators, and ii) to evaluate the adequacy of these indicators by establishing quantitative relationships between N surplus, N loss and soil organic N (SON) stock change. The results, averaged over 24-year simulation period, indicated that grass-clover dominant rotations had highest N output and showed a tendency to increase SON stocks when compared with spring-cereal monocultures.

View Article and Find Full Text PDF

During germination, the seed releases nutrient-rich exudates into the spermosphere, thereby fostering competition between resident microorganisms. However, insight into the composition and temporal dynamics of seed-associated bacterial communities under field conditions is currently lacking. This field study determined the temporal changes from 11 to 31 days after sowing in the composition of seed-associated bacterial communities of winter wheat as affected by long-term soil fertilization history, and by introduction of the plant growth-promoting microbial inoculants Penicillium bilaiae and Bacillus simplex.

View Article and Find Full Text PDF

Nitrate (N) leaching from intensively managed cropping systems is of environmental concern and it varies at local scale. To evaluate the performance of agricultural practices at this scale, there is a need to develop comprehensive assessments of N leaching and the N leaching reduction potential of mitigation measures. A model-based analysis was performed to (i) estimate N leaching from Danish cropping systems, representing 20 crop rotations, 3 soil types, 2 climates and 3-4 levels of manure (slurry)-to-fertilizer ratios, but with same available N (according to regulatory N fertilization norms), and (ii) appraise mitigation potential of on-farm measures (i.

View Article and Find Full Text PDF
Article Synopsis
  • The dataset includes chemical characteristics of plant biomass and crop residues from European agrosystems, focusing on carbon and nitrogen contents and biochemical compositions.
  • The data, sourced from scientific literature, presents mean values categorized by major production types, species, and litter types.
  • This research is part of the ResidueGas project (ERA-GAS, 2017-2021), aimed at enhancing the accuracy of greenhouse gas emission estimates related to crop residues.
View Article and Find Full Text PDF

In recent years, there has been a surge in the number of applications of Fourier-transform mid-infrared (FTIR) spectroscopy for the characterization of environmental samples and prediction of some of their properties whose measurement has traditionally involved time-consuming and costly methods. However, there are several different mid-infrared techniques available, and there is a gap in knowledge regarding the best-suited technique for recording informative spectra of different types of environmental samples. This study compared the three most widespread FTIR techniques using solid and liquid samples.

View Article and Find Full Text PDF

Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response.

View Article and Find Full Text PDF

Rice production systems are the largest anthropogenic wetlands on earth and feed more than half of the world's population. However, they are also a major source of global anthropogenic greenhouse gas (GHG) emissions. Several agronomic strategies have been proposed to improve water-use efficiency and reduce GHG emissions.

View Article and Find Full Text PDF

Thermal drying is an increasingly common post-treatment for digestate-solids, but prone to N losses via ammonia (NH) volatilization. Acidification with strong acids prior to drying may retain ammonium (NH) in the solids. Natural zeolites can provide adsorption sites for exchangeable cations as ammonium and porosity for free ammonia, which has the potential to contribute to higher N retention in the dried solids.

View Article and Find Full Text PDF

A life cycle assessment (LCA) was performed on five garden waste treatment practices: the production of mature compost including the woody fraction (MCIW), the production of mature compost without the woody fraction (MCWW), the production of immature compost without the woody fraction (ICWW), fresh garden waste including the woody fraction (GWIW) and fresh garden waste without the woody fraction (GWWW). The assessment included carbon sequestration after land application of the garden waste and composts, and associated emissions. The removed woody fraction was incinerated and energy recovery included as heat and electricity.

View Article and Find Full Text PDF

Water drainage is an important mitigation option for reducing CH (methane) emissions from residue-amended paddy soils. Several studies have indicated a long-term reduction in CH emissions, even after re-flooding, suggesting that the mechanism goes beyond creating temporary oxidized conditions in the soil. In this pot trial, the effects of different drainage patterns on straw-derived CH and CO (carbon dioxide) emissions were compared to identify the balance between straw-carbon CH and CO emissions influenced by soil aeration over different periods, including effects of drainage on emissions during re-flooding.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenteric vasculitis is the leading abdominal problem associated with vasculitis, often causing acute abdominal pain.
  • It commonly occurs in adults with systemic lupus erythematosus and polyarteritis nodosa, and in children with immunoglobulin A-vasculitis.
  • Diagnosis can be difficult but is achievable through thorough clinical evaluation and tests, with treatment options including medication for reversible cases and surgery for unstable or non-reversible situations.
View Article and Find Full Text PDF

The impact of formulation and desiccation on the shelf life of phosphate (P)-solubilising microorganisms is often under-studied, particularly relating to their ability to recover P-solubilisation activity. Here, Penicilllium bilaiae and Aspergillus niger were formulated on vermiculite (V) alone, or with the addition of protectants (skimmed milk (V + SM) and trehalose (V + T)), and on sewage sludge ash with (A + N) and without nutrients (A), and dried in a convective air dryer. After drying, the spore viability of P.

View Article and Find Full Text PDF

Knowledge about environmental impacts associated with the application of anaerobic digestion residue to agricultural land is of interest owing to the rapid proliferation of biogas plants worldwide. However, virtually no information exists concerning how soil-emitted NO is affected by the feedstock hydraulic retention time (HRT) in the biogas digester. Here, the O planar optode technique was used to visualize soil O dynamics following the surface application of digestates of the codigestion of pig slurry and agro-industrial waste.

View Article and Find Full Text PDF

Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied.

View Article and Find Full Text PDF

Biochar application to agricultural land has been proposed as a means for improving phosphorus (P) availability in soil. The purpose of the current study was to understand how pyrolysis temperature affects P speciation in biochar and how this affects availability of P in the amended soil. Biochar was produced at different temperatures from digestate solids.

View Article and Find Full Text PDF

Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production.

View Article and Find Full Text PDF

Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency.

View Article and Find Full Text PDF

Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used to investigate the environmental effects of slurry acidification and separation, and whether there were synergetic environmental benefits to combining these technologies.

View Article and Find Full Text PDF

A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth.

View Article and Find Full Text PDF

In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperature on P speciation. The photoacoustic detector has a range of advantages for the very dark biochar samples in comparison to more traditional reflectance or transmission FTIR detectors.

View Article and Find Full Text PDF

Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops.

View Article and Find Full Text PDF