In a 2.5-year-long environmental engineering experiment in the By Fjord, surface water was pumped into the deepwater where the frequency of deepwater renewals increased by a factor of 10. During the experiment, the deepwater became long-term oxic, and nitrate became the dominating dissolved inorganic nitrogen component.
View Article and Find Full Text PDFThe external phosphorus (P) loading has been halved, but the P content in the water column and the area of anoxic bottoms in Baltic proper has increased during the last 30 years. This can be explained by a temporary internal source of dissolved inorganic phosphorus (DIP) that is turned on when the water above the bottom sediment becomes anoxic. A load-response model, explaining the evolution from 1980 to 2005, suggests that the average specific DIP flux from anoxic bottoms in the Baltic proper is about 2.
View Article and Find Full Text PDFWe developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e.
View Article and Find Full Text PDFEnviron Sci Technol
December 2002
Deep-water oxygen concentrations in the Baltic Sea are influenced by eutrophication, but also by saltwater inflows from the North Sea. In the last two decades, only two major inflows have been recorded and the lack of major inflows is believed to have resulted in a long-term stagnation of the deepest bottom water. Analyzing data from 1970 to 2000 at the basin scale, we show that the estimated volume of water with oxygen, <2 mL L(-1), was actually at a minimum at the end of the longest so-called stagnation period on record.
View Article and Find Full Text PDF