Our strategy to combat resistant bacteria consisted of targeting the GyrB/ParE ATP-binding sites located on bacterial DNA gyrase and topoisomerase IV and not utilized by marketed antibiotics. Screening around the minimal ethyl urea binding motif led to the identification of isoquinoline ethyl urea 13 as a promising starting point for fragment evolution. The optimization was guided by structure-based design and focused on antibacterial activity in vitro and in vivo, culminating in the discovery of unprecedented substituents able to interact with conserved residues within the ATP-binding site.
View Article and Find Full Text PDFA series of 2-amino-[1,8]-naphthyridine-3-carboxamides (ANCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligases (LigAs) evolved from a 2,4-diaminopteridine derivative discovered by HTS. The design was guided by several highly resolved X-ray structures of our inhibitors in complex with either Streptococcus pneumoniae or Escherichia coli LigA. The structure-activity-relationship based on the ANC scaffold is discussed.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2010
The optimization of the 4-position of recently described new 3,4-disubstituted piperidine-based renin inhibitors is reported herein. The synthesis and characterization of compounds leading to the discovery of 11 (ACT-178882, MK-1597), a renin inhibitor with a suitable profile for development is described.
View Article and Find Full Text PDFThe discovery of a new series of piperidine-based renin inhibitors is described herein. SAR optimization upon the P3 renin sub-pocket is described, leading to the discovery of 9 and 41, two bioavailable renin inhibitors orally active at low doses in a transgenic rat model of hypertension.
View Article and Find Full Text PDFNew classes of de novo designed renin inhibitors are reported. Some of these compounds display excellent in vitro and in vivo activities toward human renin in a TGR model. The synthesis of these new types of mono- and bicyclic scaffolds are reported, and properties of selected compounds discussed.
View Article and Find Full Text PDFStarting from known piperidine renin inhibitors, a new series of 3,9-diazabicyclo[3.3.1]nonene derivatives was rationally designed and prepared.
View Article and Find Full Text PDFIn order to overcome the problem of drug resistance in malaria, it appears wise to concentrate drug discovery efforts toward new structural classes and new mechanisms of action. We report our results, targeting Plasmepsin II, a Plasmodium falciparum aspartic protease active in hemoglobin degradation, a parasite specific catabolic pathway. The results show that the new structural class is not only inhibiting PMII in vitro but is also active in a P.
View Article and Find Full Text PDFTwo bis-trifluoromethyl pepstatin A analogues, carboxylic acid 1 and its methyl ester 2, have been synthesised in order to probe the properties and size of the trifluoromethyl (Tfm) group and compare it to the "bigger" isobutyl that is present in pepstatin A. The results demonstrate that Tfm can effectively replace the isobutyl chain as far as inhibitory activity against plasmepsin II (PM II), an aspartic proteinase from Plasmodium falciparum, is concerned. On the other hand, replacement of isobutyl by Tfm selectively affected activity against other aspartic proteinases tested.
View Article and Find Full Text PDFThe malaria parasite Plasmodium falciparum degrades host cell hemoglobin inside an acidic food vacuole during the blood stage of the infectious cycle. A number of aspartic proteinases called plasmepsins (PMs) have been identified to play important roles in this degradation process and therefore generated significant interest as new antimalarial targets. Several x-ray structures of PMII have been described previously, but thus far, structure-guided drug design has been hampered by the fact that only inhibitors comprising a statine moiety or derivatives thereof have been published.
View Article and Find Full Text PDF