Tau PET has attracted increasing interest as an imaging biomarker for 4-repeat (4R)-tauopathy progressive supranuclear palsy (PSP). However, the translation of in vitro 4R-tau binding to in vivo tau PET signals is still unclear. Therefore, we performed a translational study using a broad spectrum of advanced methodologies to investigate the sources of [F]PI-2620 tau PET signals in individuals with 4R-tauopathies, including a pilot PET autopsy study in patients.
View Article and Find Full Text PDFBackground: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker.
View Article and Find Full Text PDFNeuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone.
View Article and Find Full Text PDFObjectives: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions.
View Article and Find Full Text PDFConsiderable fluctuations in cognitive performance and eventual dementia are an important characteristic of alpha-synucleinopathies, such as Parkinson's disease and Lewy Body dementia and are linked to cortical dysfunction. The presence of misfolded and aggregated alpha-synuclein in the cerebral cortex of patients has been suggested to play a crucial role in this process. However, the consequences of a-synuclein accumulation on the function of cortical networks at cellular resolution are largely unknown.
View Article and Find Full Text PDFCa functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca. Intracellular Ca dynamics are regulated by numerous cellular parameters.
View Article and Find Full Text PDFPro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed.
View Article and Find Full Text PDFCalorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons.
View Article and Find Full Text PDFMitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIF mice.
View Article and Find Full Text PDFSatiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca signaling, we investigated whether obesity alters Ca handling of these neurons in mice.
View Article and Find Full Text PDFIn the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons.
View Article and Find Full Text PDFUridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions.
View Article and Find Full Text PDFIn this study we analyzed transient voltage-activated K currents () of projection neurons and local interneurons in the antennal lobe of the cockroach The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes.
View Article and Find Full Text PDFActin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing.
View Article and Find Full Text PDFActivation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin.
View Article and Find Full Text PDFActivation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings.
View Article and Find Full Text PDFActivation of c-Jun N-terminal kinase 1 (JNK1)- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2)-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP)-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance.
View Article and Find Full Text PDFMaternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired.
View Article and Find Full Text PDFBrown adipose tissue (BAT) is a critical regulator of glucose, lipid, and energy homeostasis, and its activity is tightly controlled by the sympathetic nervous system. However, the mechanisms underlying CNS-dependent control of BAT sympathetic nerve activity (SNA) are only partly understood. Here, we demonstrate that catecholaminergic neurons in the locus coeruleus (LC) adapt their firing frequency to extracellular glucose concentrations in a K(ATP)-channel-dependent manner.
View Article and Find Full Text PDFIn many mammals, body weight increases continuously throughout adulthood until late middle age. The hormone leptin is necessary for maintaining body weight, in that high levels of leptin promote negative energy balance. As animals age, however, their increase in body weight is accompanied by a steady rise in circulating leptin levels, indicating the progressive development of counterregulatory mechanisms to antagonize leptin's anorexigenic effects.
View Article and Find Full Text PDFMutations in the AFG3L2 gene have been linked to spinocerebellar ataxia type 28 and spastic ataxia-neuropathy syndrome in humans; however, the pathogenic mechanism is still unclear. AFG3L2 encodes a subunit of the mitochondrial m-AAA protease, previously implicated in quality control of misfolded inner mitochondrial membrane proteins and in regulatory functions via processing of specific substrates. Here, we used a conditional Afg3l2 mouse model that allows restricted deletion of the gene in Purkinje cells (PCs) to shed light on the pathogenic cascade in the neurons mainly affected in the human diseases.
View Article and Find Full Text PDFSteroidogenic factor 1 (SF-1)-expressing neurons of the ventromedial hypothalamus (VMH) control energy homeostasis, but the role of insulin action in these cells remains undefined. We show that insulin activates phosphatidylinositol-3-OH kinase (PI3K) signaling in SF-1 neurons and reduces firing frequency in these cells through activation of K(ATP) channels. These effects were abrogated in mice with insulin receptor deficiency restricted to SF-1 neurons (SF-1(ΔIR) mice).
View Article and Find Full Text PDFA diverse population of local interneurons (LNs) helps to process, structure, and spatially represent olfactory information in the insect antennal lobe. In Periplaneta americana, we identified two subtypes of nonspiking local interneurons (type II LNs) by their distinct morphological and intrinsic electrophysiological properties. As an important step toward a better understanding of the cellular mechanisms that mediate odor information processing, we present a detailed analysis of their distinct voltage-activated Ca(2+) currents, which clearly correlated with their distinct intrinsic electrophysiological properties.
View Article and Find Full Text PDF