Sucrose monocaprate was synthesized by carrying out a lipase-catalyzed transesterification in a non-aqueous biphasic medium. Vinyl caprate was mechanically dispersed into a solution of sucrose in DMSO. The use of DMSO allowed increasing sucrose concentration up to 0.
View Article and Find Full Text PDF-biocatalysts are immobilized enzyme preparations with an outstanding robustness against leaching and mechanical stress and therefore promising tools for technical synthesis. They consist of a composite material made from a solid enzyme carrier and silicone. In this study, a method has been found to enable provision of these catalysts in large scale.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2014
The preparation of polyester particles using enzyme-catalyzed (lipase from Candida antarctica B, CALB) ring-opening polymerization of ε-caprolactone (ε-CL) in aqueous dispersion was demonstrated for the first time. Immobilization of CALB enabled a significant increase of the number-average degree of polymerization of ε-CL oligomers (up to 38) as compared to dissolved CALB (8 at the maximum). The nature and amount of lipase, as well as the nature of the support material were identified as key parameters controlling ring-opening polymerization of ε-CL in aqueous dispersion.
View Article and Find Full Text PDFLayer-by-Layer (LbL) technology recently turned out to be a versatile tool for the encapsulation of bioactive entities. In this study, the factual potential of this technology to encapsulate synthetically valuable biocatalysts, that is enzymes and whole cells expressing a specific catalytic activity, was investigated. The biocatalysts were embedded into a polyelectrolyte multilayer system involving poly(allylamine) hydrochloride (PAH) and poly(styrene sulfonate) sodium salt (PSS).
View Article and Find Full Text PDFTemplate directed Layer-by-layer (LbL) technology recently moved into the center of scientific attention, particularly as a versatile tool for bioencapsulation purposes. Its major advantages can be found in the striking simplicity of tuning wall properties and the complete control over layer thickness and permeability. Yet, for the most commonly applied pair of polyelectrolytes, poly(allylamine) hydrochloride (PAH) and poly(styrene sulfonate) sodium salt (PSS), the mandatory control of the successful deposition on plane and colloidal surfaces is currently only attainable by means of sophisticated and expensive equipment.
View Article and Find Full Text PDF