Publications by authors named "Lars O Tjernberg"

Early detection of Alzheimer's disease is vital for timely treatment. Existing biomarkers for Alzheimer's disease reflect amyloid- and tau-related pathology, but it is unknown whether the disease can be detected before cerebral amyloidosis is observed. N-glycosylation has been suggested as an upstream regulator of both amyloid and tau pathology, and levels of the N-glycan structure bisecting N-acetylglucosamine (GlcNAc) correlate with tau in blood and CSF already at pre-clinical stages of the disease.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), amyloid-β 1-42 (Aβ42) neurotoxicity stems mostly from its soluble oligomeric aggregates. Studies of such aggregates have been hampered by the lack of oligomer-specific research tools and their intrinsic instability and heterogeneity. Here, we developed a monoclonal antibody with a unique oligomer-specific binding profile (ALZ-201) using oligomer-stabilising technology.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) is a ubiquitously expressed type 1 transmembrane protein mostly known for serving as a precursor to the amyloid-β peptide (Aβ), a culprit in Alzheimer disease (AD). However, APP also has important physiological functions by being implicated in, for instance, adhesion, signaling, neuronal development, and synaptic function. Human APP contains 2 N-glycosylation sites, at asparagine (N) 467 (N467) and N496.

View Article and Find Full Text PDF

Novel insights on proteins involved in Alzheimer's disease (AD) are needed. Since multiple cell types and matrix components are altered in AD, bulk analysis of brain tissue maybe difficult to interpret. In the current study, we isolated pyramidal cells from the cornu ammonis 1 (CA1) region of the hippocampus from five AD and five neurologically healthy donors using laser capture microdissection (LCM).

View Article and Find Full Text PDF

Mass spectrometry (MS)-based proteomics is a powerful tool to explore pathogenic changes of a disease in an unbiased manner and has been used extensively in Alzheimer disease (AD) research. Here, by performing a meta-analysis of high-quality proteomic studies, we address which pathological changes are observed consistently and therefore most likely are of great importance for AD pathogenesis. We retrieved datasets, comprising a total of 21,588 distinct proteins identified across 857 postmortem human samples, from ten studies using labeled or label-free MS approaches.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC) technology has revolutionized studies on human biology. A wide range of cell types and tissue models can be derived from hiPSCs to study complex human diseases. Here, we use PiggyBac-mediated transgenesis to engineer hiPSCs with an expanded genetic code.

View Article and Find Full Text PDF

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ42), which is a key player in Alzheimer's disease.

Objective: Our aim was to clarify the subcellular locations of the fragments involved in the amyloidogenic pathway in primary neurons with a focus on Aβ42 and its immediate substrate AβPP C-terminal fragment (APP-CTF). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia, contributing to 60-80% of cases. It is a neurodegenerative disease that usually starts symptomless in the first two to three decades and then propagates into a long-term, irreversible disease, resulting in the progressive loss of memory, reasoning, abstraction and language capabilities. It is a complex disease, involving a large number of entangled players, and there is no effective treatment to cure it or alter its progressive course.

View Article and Find Full Text PDF

Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest.

View Article and Find Full Text PDF

Synaptic degeneration has been reported as one of the best pathological correlates of cognitive deficits in Alzheimer's disease. However, the location of these synaptic alterations within hippocampal sub-regions, the vulnerability of the presynaptic versus postsynaptic compartments, and the biological mechanisms for these impairments remain unknown. Here, we performed immunofluorescence labelling of different synaptic proteins in fixed and paraffin-embedded human hippocampal sections and report reduced levels of several presynaptic proteins of the neurotransmitter release machinery (complexin-1, syntaxin-1A, synaptotagmin-1 and synaptogyrin-1) in Alzheimer's disease cases.

View Article and Find Full Text PDF

Amyloid β-peptide (Aβ) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aβ oligomerization in neurons still need to be revealed. Förster resonance energy transfer (FRET) is a simple but effective way to study molecular interactions.

View Article and Find Full Text PDF

Background: We have recently identified Huntingtin (Htt), the pathogenic protein in Huntington's disease, as a mediator of Alzheimer's disease (AD) pathology in an amyloid precursor protein (APP) knock-in mouse model of AD. That finding prompted us to examine if Htt is accumulated in the brains of AD patients and in which cell type Htt is present in the AD brain.

Objective: To investigate whether location and levels of Htt are affected in hippocampus and frontal cortex in AD.

View Article and Find Full Text PDF

Protein glycosylation is crucial for the central nervous system and brain functions, including processes that are defective in Alzheimer disease (AD) such as neurogenesis, synaptic function, and memory formation. Still, the roles of glycans in the development of AD are relatively unexplored. Glycomics studies of cerebrospinal fluid (CSF) have previously shown altered glycosylation pattern in patients with different stages of cognitive impairment, including AD, compared to healthy controls.

View Article and Find Full Text PDF

Throughout development, neuronal progenitors undergo complex transformation into polarized nerve cells, warranting the directional flow of information in the neural grid. The majority of neuronal polarization studies have been carried out on rodent-derived precursor cells, programmed to develop into neurons. Unlike rodent neuronal cells, SH-SY5Y cells derived from human bone marrow present a sub-clone of neuroblastoma line, with their transformation into neuron-like cells showing a range of highly instructive neurobiological characteristics.

View Article and Find Full Text PDF

Background: The 42 amino acids long amyloid-β peptide, Aβ42, may initiate a cascade of events leading to the severe neurodegeneration observed in Alzheimer's disease (AD) brain. However, the underlying molecular mechanisms remain to be established.

Objective: To find early Aβ42-induced AD related mechanisms, we performed a brain proteomics time-course study on a novel App knock-in AD mouse model, AppNL-F, expressing high levels of Aβ42 without AβPP overexpression artifacts.

View Article and Find Full Text PDF

Background: Synaptic degeneration and accumulation of amyloid β-peptides (Aβ) are hallmarks of the Alzheimer diseased brain. Aβ is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the β-secretase BACE1 and by γ-secretase. If APP is instead cleaved by the α-secretase ADAM10, Aβ will not be generated.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a devastating disease and a global health problem, and current treatments are only symptomatic. A wealth of clinical studies support that the disease starts to develop decades before the first symptoms appear, emphasizing the importance of studying early changes for improving early diagnosis and guiding toward novel treatment strategies. Protein glycosylation is altered in AD but it remains to be clarified why these alterations occur and how they affect the disease development.

View Article and Find Full Text PDF

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path.

View Article and Find Full Text PDF

The use of human post-mortem brain material is of great value when investigating which pathological mechanisms occur in human brain, and to avoid translational problems which have for example been evident when translating animal research into Alzheimer disease (AD) clinical trials. The amyloid β (Aβ)-peptide, its amyloid precursor protein (APP) and the intermediate APP-c-terminal fragments (APP-CTFs) are all important players in AD pathogenesis. In order to elucidate which APP CTF that are the most common in brain tissue of different species and developmental stages, and whether there are any differences in these fragments between AD and control brain, we investigated the occurrence of these fragments using different APP c-terminal antibodies.

View Article and Find Full Text PDF

The amyloid-β protein precursor (AβPP) is critical in the pathophysiology of Alzheimer's disease (AD), since two-step proteolytic processing of AβPP generates the neurotoxic amyloid-β peptide (Aβ). We developed a dual fluorescence labeling system to study the exact subcellular location of γ-secretase cleavage of AβPP. The C-terminal tail of AβPP was fluorescently labeled using a SNAP-tag, while the Aβ region of AβPP was fluorescently tagged with a dye at a genetically-encoded noncanonical amino acid (ncAA).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease without a cure. The pathological process starts decades before clinical onset, and thus clinical trials of drugs aimed at treating AD should start at a presymptomatic stage. Therefore, it is critical to diagnose AD at an early stage.

View Article and Find Full Text PDF

The normal role of Alzheimer's disease (AD)-linked amyloid precursor protein (APP) in the brain remains incompletely understood. Previous studies have reported that lack of APP has detrimental effects on spines and electrophysiological parameters. APP has been described to be important in synaptic pruning during development.

View Article and Find Full Text PDF

We engineered and employed a chaperone-like amyloid-binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross-reacted with amyloid beta-peptide (Aβ42) protofibrils, but not with Aβ40 monomers.

View Article and Find Full Text PDF

The amyloid β-peptide (Aβ) is a physiological ubiquitously expressed peptide suggested to be involved in synaptic function, long-term potentiation, and memory function. The 42 amino acid-long variant (Aβ42) forms neurotoxic oligomers and amyloid plaques and plays a key role in the loss of synapses and other pathogenic events of Alzheimer disease. Still, the exact localization of Aβ42 in neurons and at synapses has not been reported.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease leads to early loss of cholinergic neurons and reduced nerve growth factor (NGF), making NGF delivery via encapsulated cell bio-delivery (ECB) a potential treatment option.
  • Previous studies showed variability in long-term viability and NGF release from ECB, prompting investigations into the effects of amyloid beta-peptides, interleukin 1-beta, and cerebrospinal fluid from various dementia patients on NGF-producing cell lines.
  • Results indicated that while amyloid beta had no significant effect, interleukin 1-beta reduced NGF production, and cerebrospinal fluid from Alzheimer's patients significantly decreased NGF release compared to other conditions, highlighting inflammation's negative impact on ECB cell
View Article and Find Full Text PDF