Publications by authors named "Lars Nyborg"

The ability of additive manufacturing to generate intricate structures has led to its popularity and widespread use in a variety of applications, ranging from the production of biomedical implants to aircraft components. Additive manufacturing techniques can overcome the limitations of the traditional manufacturing methods to create complex near-net-form structures. A vast array of clinical applications effectively employ Ti-6Al-4V as a biomaterial.

View Article and Find Full Text PDF

Although two-dimensional nanosheets like graphene could be ideal atomic coatings to prevent corrosion, it is still controversial whether they are actually effective due to the presence of parasitic effects such as galvanic corrosion. Here, we reported a reduced graphene oxide (RGO) coating strategy to protect sintered Cu metal powders from corrosion by addressing the common galvanic corrosion issue of graphene. A layer of silane molecules, namely, (3-aminopropyl)triethoxysilane (APTES), is deposited between the surface of Cu particles and the graphene oxide (GO), acting as a primer to enhance adhesion and as an insulating interlayer to prevent the direct contact of the Cu with conductive RGO, mitigating the galvanic corrosion.

View Article and Find Full Text PDF

Iron nanopowder could be used as a sintering aid to water-atomised steel powder to improve the sintered density of metallurgical (PM) compacts. For the sintering process to be efficient, the inevitable surface oxide on the nanopowder must be reduced at least in part to facilitate its sintering aid effect. While appreciable research has been conducted in the domain of oxide reduction of the normal ferrous powder, the same cannot be said about the nanometric counterpart.

View Article and Find Full Text PDF

In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection.

View Article and Find Full Text PDF