The Weighted Burgers Vector (WBV) method can extract information about dislocation types and densities present in distorted crystalline materials from electron backscatter diffraction (EBSD) maps, using no assumptions about which slip systems might be present. Furthermore, high-angular resolution EBSD (HR-EBSD) uses a cross-correlation procedure to increase the angular precision of EBSD measurements by an order of magnitude compared to conventional EBSD. However, the WBV technique has not previously been applied to HR-EBSD data and therefore it remains unclear as to which low-angle substructures can be reliably characterised by WBV analysis of conventional EBSD data and which require additional HR-EBSD processing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
Proc Natl Acad Sci U S A
February 2023
In applications critical to the geological, materials, and engineering sciences, deformation occurs at strain rates too small to be accessible experimentally. Instead, extrapolations of empirical relationships are used, leading to epistemic uncertainties in predictions. To address these problems, we construct a theory of the fundamental processes affecting dislocations: storage and recovery.
View Article and Find Full Text PDFAt low-temperature and high-stress conditions, quartz deformation is controlled by the kinetics of dislocation glide, that is, low-temperature plasticity (LTP). To investigate the relationship between intracrystalline HO content and the yield strength of quartz LTP, we have integrated spherical and Berkovich nanoindentation tests at room temperature on natural quartz with electron backscatter diffraction and secondary-ion mass spectrometry measurements of intracrystalline HO content. Dry (<20 wt ppm HO) and wet (20-100 wt ppm HO) crystals exhibit comparable indentation hardness.
View Article and Find Full Text PDFWe describe a high-temperature, uniaxial creep apparatus designed to investigate nonlinear attenuation of materials over a wide range of temperatures (25-1300 °C) using forced oscillations combined with a bias stress. This apparatus is primarily designed for investigation of minerals and rocks with high melting temperatures. An oscillatory compressional stress is used to determine attenuation and Young's modulus at frequencies of 10-10 Hz and high stress amplitudes (>0.
View Article and Find Full Text PDFChanges in stress applied to mantle rocks, such as those imposed by earthquakes, commonly induce a period of transient creep, which is often modelled based on stress transfer among slip systems due to grain interactions. However, recent experiments have demonstrated that the accumulation of stresses among dislocations is the dominant cause of strain hardening in olivine at temperatures ≤600 °C, raising the question of whether the same process contributes to transient creep at higher temperatures. Here, we demonstrate that olivine samples deformed at 25 °C or 1150-1250 °C both preserve stress heterogeneities of ~1 GPa that are imparted by dislocations and have correlation lengths of ~1 μm.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2020
The mechanical behaviour of antigorite strongly influences the strength and deformation of the subduction interface. Although there is microstructural evidence elucidating the nature of brittle deformation at low pressures, there is often conflicting evidence regarding the potential for plastic deformation in the ductile regime at higher pressures. Here, we present a series of spherical nanoindentation experiments on aggregates of natural antigorite.
View Article and Find Full Text PDFThe ability of perennial species to adapt their phenology to present and future temperature conditions is important for their ability to retain high fitness compared to other competing plant species, pests, and pathogens. Many transplanting studies with forest tree species have previously reported substantial genetic differentiation among populations within their native range. However, the question of "how local is local" is still highly debated in conservation biology because studies on genetic patterns of variation within and among populations at the local scale are limited and scattered.
View Article and Find Full Text PDFThe strength of olivine at low temperatures and high stresses in Earth's lithospheric mantle exerts a critical control on many geodynamic processes, including lithospheric flexure and the formation of plate boundaries. Unfortunately, laboratory-derived values of the strength of olivine at lithospheric conditions are highly variable and significantly disagree with those inferred from geophysical observations. We demonstrate via nanoindentation that the strength of olivine depends on the length scale of deformation, with experiments on smaller volumes of material exhibiting larger yield stresses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth.
View Article and Find Full Text PDFDislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences.
View Article and Find Full Text PDFA 65-year-old female patient suffered biventricular failure due to severe lymphoid myocarditis. Mechanical circulatory support was established with peripheral arterial-venous extracorporeal membrane oxygenation (AV-ECMO). The left ventricle was relieved by subclavian Impella 5.
View Article and Find Full Text PDFAn emerging infectious pathogen Hymenoscyphus pseudoalbidus has spread across much of Europe within recent years causing devastating damage on European common ash trees (Fraxinus excelsior) and associated plant communities. The present study demonstrates the presence of additive genetic variation in susceptibility of natural F. excelsior populations to the new invasive disease.
View Article and Find Full Text PDF