Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale optical mapping of manifold material properties. It is based on interferometric recording of the light scattered at a scanning probe tip. For dielectric samples such as biological materials or polymers, the near-field amplitude and phase signals of the scattered field reveal the local reflectivity and absorption, respectively.
View Article and Find Full Text PDFScattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for physical and chemical nanocharacterization of organic and inorganic composite materials. Being based on () diffraction-limited illumination of a scanning probe tip for nanofocusing of light and () recording of the tip-scattered radiation, the efficient suppression of background scattering has been critical for their success. Here, we show that indirect tip illumination via far-field reflection and scattering at the sample can produce s-SNOM and nano-FTIR signals of materials that are not present at the tip position - despite full background suppression.
View Article and Find Full Text PDFNano-FTIR spectroscopy based on Fourier transform infrared near-field spectroscopy allows for label-free chemical nanocharacterization of organic and inorganic composite surfaces. The potential capability for subsurface material analysis, however, is largely unexplored terrain. Here, we demonstrate nano-FTIR spectroscopy of subsurface organic layers, revealing that nano-FTIR spectra from thin surface layers differ from that of subsurface layers of the same organic material.
View Article and Find Full Text PDFInfrared nanospectroscopy based on Fourier transform infrared near-field spectroscopy (nano-FTIR) is an emerging nanoanalytical tool with large application potential for label-free mapping and identification of organic and inorganic materials with nanoscale spatial resolution. However, the detection of thin molecular layers and nanostructures on standard substrates is still challenged by weak signals. Here, we demonstrate a significant enhancement of nano-FTIR signals of a thin organic layer by exploiting polariton-resonant tip-substrate coupling and surface polariton illumination of the probing tip.
View Article and Find Full Text PDF