Publications by authors named "Lars Merkel"

The non-canonical amino acid (ncAA) analogue of methionine (Met), β-cyclopropylalanine (Cpa), was successfully incorporated into recombinant proteins expressed in Escherichia coli in a residue-specific manner. Proteins substituted in this way are congeners because they derive from the same gene sequence as the parent protein but contain a fraction of ncAAs. We have expressed congeners using parent and mutant gene sequences of various proteins (lipase, annexin A5, enhanced green fluorescent protein, and barstar) and found that Cpa incorporation is highly dependent on the protein sequence composition.

View Article and Find Full Text PDF

The Cu(I)-catalyzed cycloaddition of terminal azides and alkynes (click chemistry) represents a highly specific reaction for the functionalization of biomolecules with chemical moieties such as dyes or polymer matrices. In this study we evaluate the use of bicinchoninic acid (BCA) as a ligand for Cu(I) under physiological reaction conditions. We demonstrate that the BCA-Cu(I)-complex represents an efficient catalyst for the conjugation of fluorophores or biotin to alkyne- or azide-functionalized proteins resulting in increased or at least equal reaction yields compared to commonly used catalysts like Cu(I) in complex with TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) or BPAA (bathophenanthroline disulfonic acid).

View Article and Find Full Text PDF

A combination of classical site-directed mutagenesis, genetic code engineering and bioorthogonal reactions delivered a chemically modified barstar protein with one or four carbohydrates installed at specific residues. These protein conjugates were employed in multivalent binding studies, which support the use of proteins as structurally defined scaffolds for the presentation of multivalent ligands.

View Article and Find Full Text PDF

In vivo expression of colored proteins without post-translational modification or chemical functionalization is highly desired for protein studies and cell biology. Cell-permeable tryptophan analogues, such as azatryptophans, have proved to be almost ideal isosteric substitutes for natural tryptophan in cellular proteins. Their unique spectral features, such as markedly red-shifted fluorescence, are transmitted into protein structures upon incorporation.

View Article and Find Full Text PDF

Our long-term goal is the in vivo expression of intrinsically colored proteins without the need for further posttranslational modification or chemical functionalization by externally added reagents. Biocompatible (Aza)Indoles (Inds)/(Aza)Tryptophans (Trp) as optical probes represent almost ideal isosteric substitutes for natural Trp in cellular proteins. To overcome the limits of the traditionally used (7-Aza)Ind/(7-Aza)Trp, we substituted the single Trp residue in human annexin A5 (anxA5) by (4-Aza)Trp and (5-Aza)Trp in Trp-auxotrophic Escherichia coli cells.

View Article and Find Full Text PDF

An improved classic Strecker synthesis was elaborated leading to racemic homopropargylglycine (Hpg) in 61% overall yield, while an asymmetric Strecker reaction produced Hpg and the higher homolog 2-aminohept-6-ynoic acid in significantly higher yields and over 80% ee.

View Article and Find Full Text PDF

Pyrazolium-3-carboxylate and indazolium-3-carboxylate, which belong to the class of pseudo-cross-conjugated mesomeric betaines and which represent the electronically relevant partial structures of the betaine alkaloid Nigellicin, were examined by electrospray ionization mass spectrometry. These compounds decarboxylate to pyrazol-3-ylidene and indazol-3-ylidene. The formation of adducts of these new nucleophilic carbenes under the measurement conditions was examined.

View Article and Find Full Text PDF