Publications by authors named "Lars M Ericson"

The effect of aggregation on surfactant-suspended individual single-walled carbon nanotube (SWNT) Raman spectroscopy has been explored in the context of dielectrophoretic separation. The Raman spectra of individual surfactant-suspended HiPco SWNTs deposited on a substrate and the same suspension deposited via dielectrophoresis were compared as a function of iterative aggregation states. The evolution of the samples' radial breathing modes and tangential modes at multiple excitation wavelengths (514, 633, and 785 nm) illustrates a direct correlation between changes in the Raman spectra and a broadening and downshifting of resonance transition energies.

View Article and Find Full Text PDF

Solubilization of single-walled carbon nanotubes in aqueous solution by surface functionalization is of great interest for biosensor applications and separation of individual nanotubes. Here we have observed that HiPco nanotubes can be stably dispersed into double-stranded DNA aqueous solutions. Interestingly, the first optical interband transitions of the DNA wrapped semiconducting HiPco nanotubes possess a unique pH dependence, a phenomenon observed in SDS-encased and carboxylic group functionalized single-walled carbon nanotubes.

View Article and Find Full Text PDF

We demonstrate the continued growth of single-walled carbon nanotubes (SWNTs) from ordered arrays of open-ended SWNTs in a way analogous to epitaxy. Nanometer-sized metal catalysts were docked to the SWNT open ends and subsequently activated to restart growth. SWNTs thus grown inherit the diameters and chirality from the seeded SWNTs, as indicated by the closely matched frequencies of Raman radial breathing modes before and after the growth.

View Article and Find Full Text PDF

Well-aligned macroscopic fibers composed solely of single-walled carbon nanotubes (SWNTs) were produced by conventional spinning. Fuming sulfuric acid charges SWNTs and promotes their ordering into an aligned phase of individual mobile SWNTs surrounded by acid anions. This ordered dispersion was extruded via solution spinning into continuous lengths of macroscopic neat SWNT fibers.

View Article and Find Full Text PDF