Introduction: Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells, which mediate host immunity to microbial infection by recognizing metabolite antigens derived from microbial riboflavin synthesis presented by the MHC-I-related protein 1 (MR1). Namely, the potent MAIT cell antigens, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), form via the condensation of the riboflavin precursor 5-amino-6-D-ribitylaminouracil (5-A-RU) with the reactive carbonyl species (RCS) methylglyoxal (MG) and glyoxal (G), respectively. Although MAIT cells are abundant in humans, they are rare in mice, and increasing their abundance using expansion protocols with antigen and adjuvant has been shown to facilitate their study in mouse models of infection and disease.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs.
View Article and Find Full Text PDFBackground: In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs.
Methods: We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa.
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I-like molecule MHC-related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin.
View Article and Find Full Text PDFThis unit describes the utility of various mouse models of infection and immunization for studying mucosal-associated invariant T (MAIT) cell immunity: MAIT cells can be isolated from the lungs (or from other tissues/organs) and then identified and characterized by flow cytometry using MR1 tetramers in combination with a range of antibodies. The response kinetics, cytokine profiles, and functional differentiation of lung MAIT cells are studied following infection with the bacterial pathogen Legionella longbeachae or Salmonella enterica Typhimurium or immunization with synthetic MAIT cell antigen plus Toll-like receptor agonist. MAIT cells enriched or expanded during the process can be used for further studies.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary or infection in mice.
View Article and Find Full Text PDFMucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals.
View Article and Find Full Text PDFMucosal associated invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and small molecule chemistry, we discovered MR1 ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2).
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA)-I molecules generally bind short peptides (8-10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4TRAJ21-TRBV28TRBJ2-3 and TRAV4 TRAJ8-TRBV9TRBJ2-1), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-1.
View Article and Find Full Text PDFThe major histocompatibility complex (MHC) class-I related molecule MR1 is a monomorphic and evolutionary conserved antigen (Ag)-presenting molecule that shares the overall architecture of MHC-I and CD1 proteins. However, in contrast to MHC-I and the CD1 family that present peptides and lipids, respectively, MR1 specifically presents small organic molecules. During microbial infection of mammalian cells, MR1 captures and presents vitamin B precursors, derived from the microbial biosynthesis of riboflavin, on the surface of antigen-presenting cells.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells have a semi-invariant TCR Vα-chain, and their optimal development is dependent upon commensal flora and expression of the nonpolymorphic MHC class I-like molecule MR1. MAIT cells are activated in an MR1-restricted manner by diverse strains of bacteria and yeast, suggesting a widely shared Ag. Recently, human and mouse MR1 were found to bind bacterial riboflavin metabolites (ribityllumazine [RL] Ags) capable of activating MAIT cells.
View Article and Find Full Text PDFObesity and type 2 diabetes (T2D) are associated with low-grade inflammation, activation of immune cells, and alterations of the gut microbiota. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial ligands, are present in blood and enriched in mucosal and inflamed tissues. Here, we analyzed MAIT cells in the blood and adipose tissues of patients with T2D and/or severe obesity.
View Article and Find Full Text PDFMutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. However, the impact of MAIT TCR and MR1-ligand heterogeneity on MAIT cell biology is unclear.
View Article and Find Full Text PDFHuman CMV still remains problematic in immunocompromised patients, particularly after solid organ transplantation. CMV primary disease and reactivation greatly increase the risks associated with incidences of chronic allograft rejection and decreased survival in transplant recipients. But whether this is due to direct viral effects, indirect viral effects including cross-reactive antiviral T cell immunopathology, or a combination of both remains undetermined.
View Article and Find Full Text PDFT cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref.
View Article and Find Full Text PDFαβT-cell mediated immunity is traditionally characterised by recognition of peptides or lipids presented by the major histocompatibility complex (MHC) or the CD1 family respectively. Recently the antigenic repertoire of αβT-cells has been expanded with the observation that mucosal-associated invariant T-cells (MAIT cells), an abundant population of innate-like T-cells, can recognise metabolites of vitamin B, when presented by the MHC-related protein, MR1. The semi-invariant MAIT T-cell antigen receptor (TCR) recognises riboflavin and folic acid metabolites bound by MR1 in a conserved docking mode, and thus acts like a pattern recognition receptor.
View Article and Find Full Text PDFMucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population.
View Article and Find Full Text PDFThe mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor.
View Article and Find Full Text PDFAntigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast.
View Article and Find Full Text PDFHuman leukocyte antigens (HLAs) are highly polymorphic proteins that initiate immunity by presenting pathogen-derived peptides to T cells. HLA polymorphisms mostly map to the antigen-binding cleft, thereby diversifying the repertoire of self-derived and pathogen-derived peptide antigens selected by different HLA allotypes. A growing number of immunologically based drug reactions, including abacavir hypersensitivity syndrome (AHS) and carbamazepine-induced Stevens-Johnson syndrome (SJS), are associated with specific HLA alleles.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells express a semiinvariant αβ T cell receptor (TCR) that binds MHC class I-like molecule (MR1). However, the molecular basis for MAIT TCR recognition by MR1 is unknown. In this study, we present the crystal structure of a human Vα7.
View Article and Find Full Text PDFEBV is a ubiquitous and persistent human pathogen, kept in check by the cytotoxic T cell response. In this study, we investigated how three TCRs, which differ in their T cell immunodominance hierarchies and gene usage, interact with the same EBV determinant (FLRGRAYGL), bound to the same Ag-presenting molecule, HLA-B8. We found that the three TCRs exhibit differing fine specificities for the viral Ag.
View Article and Find Full Text PDF