Hyaluronic acid (HA) cross-linked with 1,4-butanediol diglycidyl ether (BDDE) are hydrogels with many biomedical applications. Degree of substitution, cross-linking and substitution position of the cross-linker might influence the properties of the hydrogels. We showed earlier that the most common substitution position of the cross-linker on the hyaluronan chain was the 4-hydroxyl of N-acetylglucosamine.
View Article and Find Full Text PDFHyaluronic acid polymers cross-linked with BDDE are today among the most used hydrogels for biomedical applications. The physical properties of the hydrogels depend, among other parameters, on the degree of cross-linking of HA. Another parameter likely to affect the physical properties is the substitution position of the linker on the HA functional groups.
View Article and Find Full Text PDFIn hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit.
View Article and Find Full Text PDFDefinitions and methods for the quantification of degree of modification and cross-linking in cross-linked hyaluronic acid (HA) hydrogels are outlined. A novel method is presented in which the HA hydrogel is degraded by the enzyme chondroitinase AC and the digest product analyzed by size exclusion chromatography combined with electrospray ionization mass spectrometry (SEC-ESI-MS). This method allows for the determination of effective cross-linker ratio (CrR) which together with the degree of modification (MoD), determined by, e.
View Article and Find Full Text PDFBackground: Most of the hyaluronic acid (HA)-based dermal fillers currently on the market are chemically modified with cross-linkers to improve the mechanical properties and duration in vivo.
Objective: To investigate differences in the properties of dermal fillers that can be related to the respective cross-linking and manufacturing methods used.
Methods And Materials: Thirteen commercially available HA fillers were analyzed.
Objective: The aim of the present study was to investigate the intra-articular duration of Durolane™ in a rabbit model to allow comparison between Durolane™ residence time and data reported for other hyaluronic acid products as well as native hyaluronic acid.
Design: (14)C-labeled Durolane™ was manufactured by labeling the cross-linker used for stabilization. A single injection of approximately 0.
Fifteen identified C-18 fatty acyl-containing saponin structures from Quillaja saponaria Molina have been investigated by electrospray ionization ion-trap multiple-stage mass spectrometry (ESI-IT-MS(n)) in positive ion mode. Their MS(1)-MS(3) spectra were analyzed and ions corresponding to useful fragments, important for the structural identification of Quillaja saponins, were recognized. A few key fragments could describe the structural variations in the C-3 and the C-28 oligosaccharides of the Quillaja saponins.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2010
A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMS(n)). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts.
View Article and Find Full Text PDFThirty-eight saponins in two chromatographic fractions (QH-B and QH-C) from Quillaja saponaria Molina have been separated by a two-step high-performance liquid chromatography (HPLC) procedure and investigated by electrospray ionisation ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive ion mode. MS(2) and MS(3) spectra of the compounds were investigated by principal component analysis (PCA) and could be classified by partial least squares - discriminant analysis (PLS-DA) according to the structures of the oligosaccharides at C-3 and C-28 of the saponins. Four minor components with novel structures were found in a previously non-investigated fraction of QH-C.
View Article and Find Full Text PDFIn metabolic profiling, multivariate data analysis techniques are used to interpret one-dimensional (1D) 1H NMR data. Multivariate data analysis techniques require that peaks are characterised by the same variables in every spectrum. This location constraint is essential for correct comparison of the intensities of several NMR spectra.
View Article and Find Full Text PDFWe demonstrate that the semi-quantitative information in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of tryptically digested protein mixtures can, via a systematic statistical approach, be utilized for the identification of a protein present in different concentrations in two samples. Multiple mass spectra were acquired from a series of tryptically digested test samples in which the concentration of one protein was varied and the concentrations of three other proteins were held constant. The mass spectra were subjected to soft independent modeling of class analogy (SIMCA) analysis assuming that spectra originating from two different samples belonged to different data classes.
View Article and Find Full Text PDFThe quantification of organic and amino acids in beer using 1H NMR spectroscopy is demonstrated. Quantification was made both by integration of signals in the spectra together with use of calibration references and by use of partial least-squares (PLS) regression. Results from the NMR quantifications were compared with those obtained from determinations by amino acid analysis on HPLC and organic acid analysis by capillary electrophoresis.
View Article and Find Full Text PDFTen different samples with 13 previously identified saponin structures from Quillaja saponaria Molina were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. Both positive and negative ion mode MS(1)-MS(4) spectra were analyzed, showing that structural information on the two oligosaccharide parts in the saponin can be obtained from positive ion mode spectra whereas negative ion mode spectra mainly gave information on one of the oligosaccharide parts. Analysis of MS(1)-MS(4) spectra identified useful key fragment ions important for the structural elucidation of Quillaja saponins.
View Article and Find Full Text PDF