Publications by authors named "Lars G Grunnet"

Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic.

View Article and Find Full Text PDF

Diabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research.

View Article and Find Full Text PDF
Article Synopsis
  • Encapsulation and transplantation of insulin-producing cells offer a potential cure for type 1 diabetes (T1D) without the need for immunosuppressive drugs, but existing biomaterials often cause harmful reactions that can hinder effectiveness.
  • A new nanofibrous device has been developed, featuring a thin alginate hydrogel coating that reduces fibrotic responses and enhances mass transfer, allowing for better cell function.
  • The device has shown promising results in long-term diabetes correction in mice and demonstrates the ability to scale and be retrieved, indicating its potential for clinical applications in T1D and other diseases.
View Article and Find Full Text PDF

Diabetes is a serious chronic disease, which globally affects more than 400 million patients. Beta cell therapy has potential to serve as an effective cure to type 1 diabetes and several studies have already shown promising results in this regard. One of the major obstacles in cell therapy, however, is the hypoxic environment that therapeutic cells are subjected to immediately after the transplantation.

View Article and Find Full Text PDF

Foreign body reaction (FBR) to implanted biomaterials and medical devices is common and can compromise the function of implants or cause complications. For example, in cell encapsulation, cellular overgrowth (CO) and fibrosis around the cellular constructs can reduce the mass transfer of oxygen, nutrients and metabolic wastes, undermining cell function and leading to transplant failure. Therefore, materials that mitigate FBR or CO will have broad applications in biomedicine.

View Article and Find Full Text PDF

Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures.

View Article and Find Full Text PDF

Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates.

Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice.

View Article and Find Full Text PDF

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement.

View Article and Find Full Text PDF

Aim: An insufficient functional β-cell mass is a prerequisite to develop diabetes. Thus, means to protect or restore β-cell mass are important goals in diabetes research. Inflammation and proinflammatory cytokines play important roles in β-cell dysfunction and death, and recent data show that 2 miRNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is evolving into a global disease and patients have a systemic low-grade inflammation, yet the role of this inflammation is still not established. One plausible mechanism is enhanced expression and activity of the innate immune system. Therefore, we evaluated the expression and the function of the toll-like receptor 4 (TLR4) on pancreatic β-cells in primary mouse islets and on the murine β-cell line MIN6 in the presence or absence of macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • Type 1 diabetes is caused by the destruction of pancreatic β-cells, and researchers are exploring lysine deacetylase inhibitors (KDACi) as potential treatments to protect these cells from inflammation.
  • In a study using nonobese diabetic (NOD) mice, the KDACi vorinostat and givinostat were shown to significantly reduce diabetes incidence and improve pancreatic health.
  • The treatments increased functional regulatory T-cells while reducing inflammation markers, revealing a specific mechanism involving transcription factor hyperacetylation that could lead to clinical trials for KDACi in treating autoimmune diseases like type 1 diabetes.
View Article and Find Full Text PDF

Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates.

View Article and Find Full Text PDF
Article Synopsis
  • Pro-inflammatory cytokines like IL-1β and IFNγ are linked to β-cell failure in diabetes, and inhibiting these signals can improve β-cell function and blood sugar levels.
  • KDAC inhibitors (like givinostat) reduce the harmful effects of IL-1β and IFNγ on β-cells, which is beneficial for managing diabetes.
  • The study suggests that targeting KDACs could be a new strategy for diabetes treatment by blocking specific inflammatory pathways that damage β-cells.
View Article and Find Full Text PDF

Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1β induces divalent metal transporter 1 (DMT1) expression correlating with increased β cell iron content and ROS production.

View Article and Find Full Text PDF

Background: The pathogenesis of colorectal neoplasia is still unresolved but has been associated with alterations in epithelial clearance of xenobiotics and metabolic waste products. The aim of this study was to functionally characterize the transport of cyclic nucleotides in colonic biopsies from patients with and without colorectal neoplasia.

Methods: Cyclic nucleotides were used as model substrates shared by some OATP- and ABC-transporters, which in part are responsible for clearance of metabolites and xenobiotics from the colonic epithelium.

View Article and Find Full Text PDF

Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.

View Article and Find Full Text PDF

Biological activity of the neural cell adhesion molecule (NCAM) depends on both adhesion and activation of intra-cellular signaling. Based on in vitro experiments with truncated extra-cellular domains, several models describing homophilic NCAM trans- and cis-interactions have been proposed. However, cis-dimerization in living cells has not been shown directly and the role of the cytoplasmic part in NCAM dimerization is poorly understood.

View Article and Find Full Text PDF

Background: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146.

View Article and Find Full Text PDF

Accumulating evidence suggests that endoplasmic reticulum (ER) stress by mechanisms that include ER Ca(2+) depletion via NO-dependent down-regulation of sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) contributes to beta-cell death in type 1 diabetes. To clarify whether the molecular pathways elicited by NO and ER Ca(2+) depletion differ, we here compare the direct effects of NO, in the form of the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP), with the effects of SERCA2 inhibitor thapsigargin (TG) on MAPK, nuclear factor kappaB (NFkappaB), Bcl-2 proteins, ER stress, and apoptosis. Exposure of INS-1E cells to TG or SNAP caused caspase-3 cleavage and apoptosis.

View Article and Find Full Text PDF

Objective: Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells.

View Article and Find Full Text PDF