Publications by authors named "Lars Frankenstein"

Si-based anodes can increase specific energy and energy density of Li ion batteries. However, the volume-induced material stress and capacity loss necessitates only a partial Si utilization within composite anodes, typically with state-of-the-art graphite, so called Si/Gr composites. In this work, various Si nanowires (SiNWs), a promising Si architecture for these composites, are investigated and modified via pre-lithiation.

View Article and Find Full Text PDF

Dual-ion batteries (DIBs) represent a promising alternative for lithium ion batteries (LIBs) for various niche applications. DIBs with polymer-based active materials, here poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl methacrylate) (PTMA), are of particular interest for high power applications, though they require appropriate electrolyte formulations. As the anion mobility plays a crucial role in transport kinetics, Li salts are varied using the well-dissociating solvent γ-butyrolactone (GBL).

View Article and Find Full Text PDF

The specific energy/energy density of state-of-the-art (SOTA) Li-ion batteries can be increased by raising the upper charge voltage. However, instability of SOTA cathodes (i. e.

View Article and Find Full Text PDF

The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost. However, long cycling stability is a key challenge for commercializing these composites. In this study, to solve this issue, we have developed a multifunctional polymeric artificial solid-electrolyte interphase (A-SEI) protective layer on carbon-coated Si@Gr anode particles (making Si@Gr/C-SCS) to prolong the cycling stability in LIBs.

View Article and Find Full Text PDF

Silicon (Si)-based negative electrodes have attracted much attention to increase the energy density of lithium ion batteries (LIBs) but suffer from severe volume changes, leading to continuous re-formation of the solid electrolyte interphase and consumption of active lithium. The pre-lithiation approach with the help of positive electrode additives has emerged as a highly appealing strategy to decrease the loss of active lithium in Si-based LIB full-cells and enable their practical implementation. Here, the use of lithium squarate (Li C O ) as low-cost and air-stable pre-lithiation additive for a LiNi Mn Co O (NMC622)-based positive electrode is investigated.

View Article and Find Full Text PDF

Herein we report on an analytical study of dry-shredded lithium-ion battery (LIB) materials with unknown composition. Samples from an industrial recycling process were analyzed concerning the elemental composition and (organic) compound speciation. Deep understanding of the base material for LIB recycling was obtained by identification and analysis of transition metal stoichiometry, current collector metals, base electrolyte and electrolyte additive residues, aging marker molecules and polymer binder fingerprints.

View Article and Find Full Text PDF