Publications by authors named "Lars Feuerbach"

The characterization of somatic genomic variation associated with the biology of tumors is fundamental for cancer research and personalized medicine, as it guides the reliability and impact of cancer studies and genomic-based decisions in clinical oncology. However, the quality and scope of tumor genome analysis across cancer research centers and hospitals are currently highly heterogeneous, limiting the consistency of tumor diagnoses across hospitals and the possibilities of data sharing and data integration across studies. With the aim of providing users with actionable and personalized recommendations for the overall enhancement and harmonization of somatic variant identification across research and clinical environments, we have developed ONCOLINER.

View Article and Find Full Text PDF

The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672).

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5'isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5'isomiRs have not been studied in detail yet.

View Article and Find Full Text PDF

Motivation: Analysis of focal copy number variations (CNVs) is highly relevant for cancer research, as they pinpoint driver genes. More specifically, due to selective pressure oncogenes and tumor suppressor genes are more often affected by these events than neighboring passengers. In cases where multiple candidates co-reside in a genomic locus, careful comparison is required to either identify multigenic minimally deleted regions of synergistic co-mutations, or the true single driver gene.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs with diverse functions in post-transcriptional regulation of gene expression. Sequence and length variants of miRNAs are called isomiRs and can exert different functions compared to their canonical counterparts. The Cancer Genome Atlas (TCGA) provides isomiR-level expression data for patients of various cancer entities collected in a multi-center approach over several years.

View Article and Find Full Text PDF

Large sets of whole cancer genomes make it possible to study mutation hotspots genome-wide. Here we detect, categorize, and characterize site-specific hotspots using 2279 whole cancer genomes from the Pan-Cancer Analysis of Whole Genomes project and provide a resource of annotated hotspots genome-wide. We investigate the excess of hotspots in both protein-coding and gene regulatory regions and develop measures of positive selection and functional impact for individual hotspots.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates telomere maintenance methods, specifically telomerase activation and alternative lengthening of telomeres (ALT), in primary and relapsed neuroblastomas, finding that ALT is linked to worse outcomes in patients.
  • - Researchers analyzed 760 neuroblastoma cases and discovered that ALT-positive tumors have unique molecular characteristics, including lower ATRX/DAXX complex levels, mainly due to ATRX mutations or decreased protein expression.
  • - Despite slower growth rates and a prolonged disease course, children with ALT-positive neuroblastomas experience poor prognoses, indicating a critical need for targeted clinical approaches.
View Article and Find Full Text PDF

Chromothripsis is a recently identified mutational phenomenon, by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosome(s). Considered as an early event in tumour development, this form of genome instability plays a prominent role in tumour onset. Chromothripsis prevalence might have been underestimated when using low-resolution methods, and pan-cancer studies based on sequencing are rare.

View Article and Find Full Text PDF

The discovery of drivers of cancer has traditionally focused on protein-coding genes. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes.

View Article and Find Full Text PDF

Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms.

View Article and Find Full Text PDF

Background: Establishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets.

View Article and Find Full Text PDF

Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation.

View Article and Find Full Text PDF

Prostate cancers harboring DNA repair gene alterations are particularly sensitive to PARP inhibitor treatment. We report a case of an advanced prostate cancer patient profiled within the NCT-MASTER (Molecularly Aided Stratification for Tumor Eradication Research) precision oncology program using next-generation sequencing. Comprehensive genomic and transcriptomic analysis identified a pathogenic germline variant as well as a mutational signature associated with disturbed homologous recombination together with structural genomic rearrangements.

View Article and Find Full Text PDF

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients.

View Article and Find Full Text PDF

We used whole-genome and transcriptome sequencing to identify clinically actionable genomic alterations in young adults with pancreatic ductal adenocarcinoma (PDAC). Molecular characterization of 17 patients with PDAC enrolled in a precision oncology program revealed gene fusions amenable to pharmacologic inhibition by small-molecule tyrosine kinase inhibitors in all patients with wild-type () tumors (4 of 17). These alterations included recurrent rearrangements predicted to drive PDAC development through aberrant ERBB receptor-mediated signaling, and pharmacologic ERBB inhibition resulted in clinical improvement and remission of liver metastases in 2 patients with -rearranged tumors that had proved resistant to standard treatment.

View Article and Find Full Text PDF
Article Synopsis
  • cSCC is a common skin cancer that often develops from actinic keratosis (AK), which is caused by UV exposure, but the progression from AK to cSCC is not fully understood.
  • Researchers used Infinium MethylationEPIC BeadChips to study DNA methylation in samples of healthy skin, AK, and cSCC, revealing that AK already exhibits cancer-like methylation patterns similar to cSCC.
  • The study noted that AK and cSCC can be classified into two subclasses based on keratinocyte differentiation, with some samples showing characteristics linked to stem cells while others appear more like healthy skin.
View Article and Find Full Text PDF

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA CD4 Tmem cells from blood and CD69 Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation.

View Article and Find Full Text PDF

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods.

View Article and Find Full Text PDF

Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors' clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by a unified evolutionary process. By assaying multiple topographically distinct tumor sites, premalignant lesions, and lymph node metastases within five cases of prostate cancer, we demonstrate that both DNA methylation and copy-number heterogeneity consistently reflect the life history of the tumors.

View Article and Find Full Text PDF

Predicting the transcription start sites (TSSs) of microRNAs (miRNAs) is important for understanding how these small RNA molecules, known to regulate translation and stability of protein-coding genes, are regulated themselves. Previous approaches are primarily based on genetic features, trained on TSSs of protein-coding genes, and have low prediction accuracy. Recently, a support vector machine based technique has been proposed for miRNA TSS prediction that uses known miRNA TSS for training the classifier along with a set of existing and novel CpG island based features.

View Article and Find Full Text PDF