Introduction: The human gut microbiota influence critical functions including the metabolism of nutrients, xenobiotics, and drugs. Gut microbial β-glucuronidases (GUS) enzymes facilitate the removal of glucuronic acid from various compounds, potentially affecting anti-cancer drug efficacy and reactivating carcinogens. This review aims to comprehensively analyze and summarize studies on the role of gut microbial GUS in cancer and its interaction with anti-cancer treatments.
View Article and Find Full Text PDFPurpose: Unpredictable chemotherapy side effects are a major barrier to successful treatment. Cell culture and mouse experiments indicate that the gut microbiota is influenced by and influences anti-cancer drugs. However, metagenomic data from patients paired to careful side effect monitoring remains limited.
View Article and Find Full Text PDFBackground: 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts.
View Article and Find Full Text PDFThis clinical study explored the associations between the intestinal microbiota, chemotherapy toxicity, and treatment response in postmenopausal oestrogen receptor positive breast cancer patients.Oestrogen receptor positive postmenopausal breast cancer patients were prospectively enroled in a multicentre cohort study and treated with 4 cycles of (neo)adjuvant adriamycin, cyclophosphamide (AC) followed by 4 cycles of docetaxel (D). Patients collected a faecal sample and completed a questionnaire before treatment, during AC, during D, and after completing AC-D.
View Article and Find Full Text PDFBackground: Previous preclinical and clinical research has investigated the role of intestinal microbiota in carcinogenesis. Growing evidence exists that intestinal microbiota can influence breast cancer carcinogenesis. However, the role of intestinal microbiota in breast cancer needs to be further investigated.
View Article and Find Full Text PDF