Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches that circumvent laborious multi-step fabrication include the exploitation of the possibility of nonuniform catalytic activity along the surface of irregular particle shapes, local excitation or intrinsic asymmetry. Unfortunately, the effects on the generation of motion remain poorly understood.
View Article and Find Full Text PDFNeuronal networks derived from human induced pluripotent stem cells have been exploited widely for modeling neuronal circuits, neurological diseases, and drug screening. As these networks require extended culturing periods to functionally mature in vitro, most studies are based on immature networks. To obtain insights on long-term functional features, we improved a glia-neuron co-culture protocol within multi-electrode arrays, facilitating continuous assessment of electrical features in weekly intervals.
View Article and Find Full Text PDFAberrations degrade the accuracy of quantitative, imaging-based measurements, like particle image velocimetry (PIV). Adaptive optical elements can in principle correct the wavefront distortions, but are limited by their technical specifications. Here we propose an actuator-free correction based on a multiple-input deep convolutional neural network which uses an additional input from a wavefront sensor to correct time-varying distortions.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2021
Zinc-air flow batteries provide a scalable and cost-efficient energy storage solution. However, the achieved power density depends on the local flow conditions of the zinc particle suspension in the electrochemical cell. Numerical modeling is challenging due to the complex multiphase fluid and the interaction of flow and electrochemistry.
View Article and Find Full Text PDFLensless fiber microendoscopes enable optical diagnostics and therapy with minimal invasiveness. Because of their small diameters, multimode fibers are ideal candidates, but mode scrambling hinders the transmission of structured light fields. We present the generation of a localized fringe system at variable distances from the distal fiber end by exploiting digital optical phase conjugation.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2019
Flow batteries using suspension electrodes, e.g., zinc-air flow batteries (ZABs), have recently gained renewed interest as potential candidates for grid energy storage or mobile applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2019
Crystal growth processes can profit from an electromagnetically driven melt flow since controlling them allows optimizing the mass and heat transfers in the melt and, thereby, improves the structural and electrical properties of the grown crystals. This process optimization requires a precise understanding of magnetohydrodynamics (MHD) phenomena in crystal growth. Studying time-dependent MHD demands for a high temporal resolution combined with a long measurement duration to analyze the transitional flow behavior.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
March 2019
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain.
View Article and Find Full Text PDFMetabolic control of phenylalanine concentrations in body fluids is essential for cognitive development and executive function. The hepatic phenylalanine hydroxylating system is regulated by the ratio of l-phenylalanine, which is substrate of phenylalanine hydroxylase (PAH), to the PAH cofactor tetrahydrobiopterin (BH4). Physiologically, phenylalanine availability is governed by nutrient intake, whereas liver BH4 is kept at constant level.
View Article and Find Full Text PDFThe flow field of moving foams is relevant for basic research and for the optimization of industrial processes such as froth flotation. However, no adequate measurement technique exists for the local velocity distribution inside the foam bulk. We have investigated the ultrasound Doppler velocimetry (UDV), providing the first two-dimensional, non-invasive velocity measurement technique with an adequate spatial (10mm) and temporal resolution (2.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2017
Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals.
View Article and Find Full Text PDFThe transmission of multiple independent optical signals through a multimode fiber is accomplished using wavefront shaping in order to compensate for the light distortion during the propagation within the fiber. Our methodology is based on digital optical phase conjugation employing only a single spatial light modulator, where the optical wavefront is individually modulated at different regions of the modulator, one region per light signal. Digital optical phase conjugation approaches are considered to be faster than other wavefront shaping approaches, where (for example) a complete determination of the wave propagation behavior of the fiber is performed.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2017
A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells.
View Article and Find Full Text PDFParticle tracking velocimetry (PTV) is a valuable tool for microfluidic analysis. Especially mixing processes and the environmental interaction of fluids on a microscopic scale are of particular importance for pharmaceutical and biomedical applications. However, currently applied techniques suffer from the lag of instantaneous depth information.
View Article and Find Full Text PDFLaser ultrasonics is a powerful technique for contactless investigation of important material parameters such as Young's modulus or thin layer thickness. However, the often employed Gaussian beams result in diverging sound fields of quickly decreasing intensity. Conventionally, changing the laser beam profile requires the slow movement or exchange of optical elements.
View Article and Find Full Text PDFImaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty.
View Article and Find Full Text PDFMultimode fibers are attractive for a variety of applications such as communication engineering and biophotonics. However, a major hurdle for the optical transmission through multimode fibers is the inherent mode mixing. Although an image transmission was successfully accomplished using wavefront shaping, the image information was not transmitted individually for each of the independent pixels.
View Article and Find Full Text PDFLaser optical techniques are widely used for flow measurements as they offer a high spatial and velocity resolution. However, undisturbed optical access to the measurement volume is desired. In order to measure through a fluctuating phase boundary, we present the use of adaptive optics.
View Article and Find Full Text PDFOptical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics.
View Article and Find Full Text PDFTo reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements.
View Article and Find Full Text PDFTo experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented.
View Article and Find Full Text PDFDoppler global velocimetry (DGV) is considered to be a useful optical measurement tool for acquiring flow velocity fields. Often near-wall measurements are required, which is still challenging due to errors resulting from background scattering and multiple-particle scattering. Since the magnitudes of both errors are unknown so far, they are investigated by scattering simulations and experiments.
View Article and Find Full Text PDFFor monitoring the position and shape of fast moving and, especially, rotating objects such as turbo machine rotors, contactless and compact sensors with a high measurement rate as well as high precision are required. We present for the first time, to the best of our knowledge, a novel laser Doppler sensor employing a single fan-shaped interference fringe system, which allows measuring for the position and shape of fast moving solid bodies with known tangential velocity. It is shown theoretically as well as experimentally that this sensor offers concurrently high position resolution and high temporal resolution in contrast to conventional measurement techniques, since its measurement uncertainty is, in principle, independent of the object velocity.
View Article and Find Full Text PDFIn this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed.
View Article and Find Full Text PDFA Doppler global velocimetry (DGV) measurement technique with a sinusoidal laser frequency modulation is presented for measuring velocity fields in fluid flows. A cesium absorption cell is used for the conversion of the Doppler shift frequency into a change in light intensity, which can be measured by a fiber coupled avalanche photo diode array. Because of a harmonic analysis of the detector element signals, no errors due to detector offset drifts occur and no reference detector array is necessary for measuring the scattered light power.
View Article and Find Full Text PDF