Publications by authors named "Lars Breuer"

Characteristic properties of secondary electrons emitted from irradiated two-dimensional materials arise from multi-length and multi-time-scale relaxation processes that connect the initial nonequilibrium excited electron distribution with their eventual emission. To understand these processes, which are critical for using secondary electrons as high-resolution thermalization probes, we combine first-principles real-time electron dynamics with irradiation experiments. Our data for cold and hot proton-irradiated graphene show signatures of kinetic and potential emission and generally good agreement for electron yields between experiment and theory.

View Article and Find Full Text PDF

Two-dimensional semiconductors such as MoS are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics.

View Article and Find Full Text PDF

The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10. Our lab has developed a method for the direct determination of α in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound.

View Article and Find Full Text PDF

The formation of neutral gas phase indium carbide clusters under C60(+) ion bombardment of solid indium was investigated using laser based postionization prior to mass spectrometric detection. Two different postionization methods were used and shown to provide saturated photoionization efficiency, thereby delivering nearly the same information about the composition of the sputtered material. The resulting size distributions of neutral In(m)C(n) clusters are compared with those of the corresponding cationic secondary cluster ions and discussed in terms of calculated cluster properties.

View Article and Find Full Text PDF