Congenital heart defects (CHD) appear in almost one percent of live births. Asian countries have the highest birth prevalence of CHD in the world. Recessive genotypes may represent a CHD risk factor in Asian populations with a high degree of consanguineous marriages.
View Article and Find Full Text PDFBackground & Aim: Congenital heart disease (CHD) is the most common cause of non-infectious deaths in infants worldwide. However, the molecular mechanisms underlying CHD remain unclear. Approximately 30 % of the causes are believed to be genetic mutations and chromosomal abnormalities.
View Article and Find Full Text PDFBackground: Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart.
Methods: Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts.
Microcephaly primary hereditary (MCPH) is a congenital disease characterized by nonsyndromic reduction in brain size due to impaired neurogenesis, often associated with a variable degree of intellectual disability (ID). The genetic etiology of MCPH is heterogeneous and comprises more than 20 loci, nearly all following a recessive inheritance pattern. The first causative gene identified, or , encodes a centrosomal protein that modulates chromosome condensation and cell cycle progression.
View Article and Find Full Text PDFPatients with atrial septal defects (ASDs) have increased mortality and morbidity. This can only partly be explained by hemodynamic changes caused by the ASD, suggesting additional underlying causes. Patients with an ASD have an increased burden of pathogenic gene variants in ASD-related genes, indicating genetics as an important factor in etiology.
View Article and Find Full Text PDFNumerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls.
View Article and Find Full Text PDFPrimary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.
View Article and Find Full Text PDFMost university biobanks begin like other university research projects, that is, with an idea conceived by an individual researcher in pursuit of his/her own research interests, publications, funding, and career. Some biobanks, however, come to have scientific value that goes beyond the projects that were initially responsible for the collection of the samples and data they contain. Such value may derive from among other things the uniqueness of the samples in terms of their sheer volume, the quality of the samples, the ability to link the samples with information retrieved in disease registries, or the fact that the samples represent very rare diseases.
View Article and Find Full Text PDFPrimary cilia have pivotal roles as organizers of many different signaling pathways, including platelet-derived growth factor receptor α (PDGFRα) signaling, which, when aberrantly regulated, is associated with developmental disorders, tumorigenesis, and cancer. PDGFRα is up-regulated during ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown.
View Article and Find Full Text PDFCDK5RAP2 gene encodes a centrosomal protein, highly expressed in fetal brain and essentially indispensable for its normal development, as biallelic mutations in it lead to primary microcephaly (MCPH). Despite being known as MCPH linked gene for more than a decade, the phenotypic spectrum of CDK5RAP2 mutations is still under explored as only eleven families have been reported worldwide. Here, we analyzed a consanguineous Pakistani MCPH family, characterized by moderate to severe intellectual disability, speech impairment, moderately short stature and sparse eyebrows.
View Article and Find Full Text PDFCilia
March 2017
Background: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical surface facing the outside and accessible for analysis of ciliary function.
Methods: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls.
Background: Congenital heart disease (CHD) occurs in approximately 1% of all live births, and 3% to 8% of these have until now been considered familial cases, defined as the occurrence of two or more affected individuals in a family. The validity of CHD diagnoses in Danish administrative registry data has only been studied previously in highly selected patient populations. These studies identified high positive predictive values (PPVs) and recurrence risk ratios (RRRs-ratio between probabilities of CHD given family history of CHD and no family history).
View Article and Find Full Text PDFObjective: Atrial septal defect (ASD) is the second most common congenital heart defect (CHD) and is observed in families as an autosomal dominant trait as well as in nonfamilial CHD. Mutations in the NKX2-5 gene, located on chromosome 5, are associated with ASD, often combined with conduction disturbances, cardiomyopathies, complex CHD, and sudden cardiac death as well. Here, we show that NKX2-5 mutations primarily occur in ASD patients with conduction disturbances and heritable ASD.
View Article and Find Full Text PDFPrimary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease.
View Article and Find Full Text PDFCongenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype.
View Article and Find Full Text PDFTransforming growth factor β (TGF-β) signaling is regulated by clathrin-dependent endocytosis (CDE) for the control of cellular processes during development and in tissue homeostasis. The primary cilium coordinates several signaling pathways, and the pocket surrounding the base and proximal part of the cilium is a site for CDE. We report here that TGF-β receptors localize to the ciliary tip and endocytic vesicles at the ciliary base in fibroblasts and that TGF-β stimulation increases receptor localization and activation of SMAD2/3 and ERK1/2 at the ciliary base.
View Article and Find Full Text PDFRecurrent copy number variants (CNVs) are found in a significant proportion of patients with congenital heart disease (CHD) and some of these CNVs are associated with other developmental defects. In some syndromic patients, CHD may be the first presenting symptom, thus screening of patients with CHD for CNVs in specific genomic regions may lead to early diagnosis and awareness of extracardiac symptoms. We designed a multiplex ligation-dependent probe amplification (MLPA) assay specifically for screening of CHD patients.
View Article and Find Full Text PDFCongenital heart disease (CHD) affects 1% of the population. The aetiology of CHD is complex and largely unknown, comprising both environmental and genetic components. Recent progress in molecular cytogenetics has led to the identification of rare genomic copy number variants (CNVs) in a significant proportion of CHD patients.
View Article and Find Full Text PDFCongenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion on 6q delineated a critical 850 kb region on 6q25.
View Article and Find Full Text PDFThe multiplex ligation-dependent probe amplification (MLPA) technique is a sensitive technique for relative quantification of up to 50 different nucleic acid sequences in a single reaction, and the technique is routinely used for copy number analysis in various syndromes and diseases. The aim of the study was to exploit the potential of MLPA when the DNA material is limited. The DNA concentration required in standard MLPA analysis is not attainable from dried blood spot samples (DBSS) often used in neonatal screening programs.
View Article and Find Full Text PDFThe chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1-RUNX1T1 fusion protein.
View Article and Find Full Text PDF