Publications by authors named "Larry Zeitlin"

Effective treatment and immunoprophylaxis of viral respiratory infections with neutralizing monoclonal antibodies (mAbs) require maintaining inhibitory concentrations of mAbs at the airway surface. While engineered mAbs with increased affinity to the neonatal Fc receptor (FcRn) are increasingly employed, little is known how increased affinity of Fc to FcRn influences basal-to-apical transepithelial transport (transcytosis) of mAbs across the airway epithelium. To investigate this, we utilized a model of well-differentiated human airway epithelium (WD-HAE) that exhibited robust FcRn expression, and measured the transepithelial transport of a mAb against SARS-CoV-2 Spike protein (CR3022) with either wildtype IgG-Fc or Fc modified with YTE or LS mutations known to increase affinity for FcRn.

View Article and Find Full Text PDF

Evaluating the adaptive immune responses to natural infection with Crimean-Congo hemorrhagic fever (CCHF) virus (CCHFV) in human survivors is critical to the development of medical countermeasures. However, the correlates of protection are unknown. As the most prevalent tick-borne human hemorrhagic fever virus with case fatality rates of 5%-30% and worldwide distribution, there is an urgent need to fill these knowledge gaps.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, exclusive to Nairoviridae, is a target of protective antibodies and is a key antigen in preclinical vaccine candidates. Here, we isolate 188 GP38-specific antibodies from human survivors of infection.

View Article and Find Full Text PDF

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus.

View Article and Find Full Text PDF

No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to , is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection.

View Article and Find Full Text PDF

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging hantaviruses are dangerous to humans, causing severe diseases with no current vaccines or treatments.
  • Researchers isolated a monoclonal antibody that targets the viral fusion complex, explaining its broad neutralizing capability against hantaviruses.
  • An engineered variant of this antibody shows improved effectiveness against the dangerous Andes virus, positioning it as a promising candidate for a universal hantavirus treatment.
View Article and Find Full Text PDF

High rates of unintended pregnancies worldwide indicate a need for more accessible and acceptable methods of contraception. We have developed a monoclonal antibody, the Human Contraception Antibody (HCA), for use by women in vaginal films and rings for contraception. The divalent F(ab')2 region of HCA binds to an abundant male reproductive tract-specific antigen, CD52g, and potently agglutinates sperm.

View Article and Find Full Text PDF

This protocol describes the use of silicon photonic microring resonator sensors for detection of Ebola virus (EBOV) and Sudan virus (SUDV) soluble glycoprotein (sGP). This protocol encompasses biosensor functionalization of silicon microring resonator chips, detection of protein biomarkers in sera, preparing calibration standards for analytical validation, and quantification of the results from these experiments. This protocol is readily adaptable toward other analytes, including cytokines, chemokines, nucleic acids, and viruses.

View Article and Find Full Text PDF

Ebola virus (EBOV) is a highly infectious pathogen, with a case mortality rate as high as 89%. Rapid therapeutic treatments and supportive measures can drastically improve patient outcome; however, the symptoms of EBOV disease (EVD) lack specificity from other endemic diseases. Given the high mortality and significant symptom overlap, there is a critical need for sensitive, rapid diagnostics for EVD.

View Article and Find Full Text PDF

Intravenous (IV) administration of antiviral monoclonal antibodies (mAbs) can be challenging, particularly during an ongoing epidemic, due to the considerable resources required for performing infusions. An ebolavirus therapeutic administered via intramuscular (IM) injection would reduce the burdens associated with IV infusion and allow rapid treatment of exposed individuals during an outbreak. Here, we demonstrate how MBP134, a cocktail of two pan-ebolavirus mAbs, reverses the course of disease (Gulu variant) with a single IV or IM dose in non-human primates (NHPs) as late as five days post-exposure.

View Article and Find Full Text PDF

A major challenge in managing acute viral infections is ameliorating disease when treatment is delayed. Previously, we reported the success of a 2-pronged mAb and antiviral remdesivir therapeutic approach to treat advanced illness in rhesus monkeys infected with Marburg virus (MARV). Here, we explored the benefit of a similar combination therapy for Sudan ebolavirus (Sudan virus; SUDV) infection.

View Article and Find Full Text PDF
Article Synopsis
  • The hantavirus Puumala virus (PUUV) and related viruses lead to serious diseases in humans, but there are currently no FDA-approved treatments available.
  • Recent research has identified human neutralizing antibodies (nAbs) that target specific glycoprotein spikes of the virus, which may help in treating these infections.
  • One particularly promising nAb, ADI-42898, has shown the ability to block virus entry and provide protection in animal models, making it a strong candidate for future clinical use and vaccine development.
View Article and Find Full Text PDF

The ongoing SARS-CoV-2 coronavirus pandemic of 2020-2021 underscores the need for manufacturing platforms that can rapidly produce monoclonal antibody (mAb) therapies. As reported here, a platform based on produced mAb therapeutics with high batch-to-batch reproducibility and flexibility, enabling production of 19 different mAbs of sufficient purity and safety for clinical application(s). With a single manufacturing run, impurities were effectively removed for a representative mAb product (the ZMapp component c4G7).

View Article and Find Full Text PDF

The three encephalitic alphaviruses, namely, the Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are classified by the Centers for Disease Control and Prevention (CDC) as biothreat agents. Currently, no licensed medical countermeasures (MCMs) against these viruses are available for humans. Neutralizing antibodies (NAbs) are fast-acting and highly effective MCMs for use in both pre- and post-exposure settings against biothreat agents.

View Article and Find Full Text PDF

Nonhormonal products for on-demand contraception are a global health technology gap; this unmet need motivated us to pursue the use of sperm-binding monoclonal antibodies to enable effective on-demand contraception. Here, using the cGMP-compliant -expression system, we produced an ultrapotent sperm-binding IgG antibody possessing 6 Fab arms per molecule that bind a well-established contraceptive antigen target, CD52g. We term this hexavalent antibody "Fab-IgG-Fab" (FIF).

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) hold great promise for treating diseases ranging from cancer to infectious disease. Manufacture of mAbs is challenging, expensive, and time-consuming using mammalian systems. We describe detailed methods used by Kentucky BioProcessing (KBP), a subsidiary of British American Tobacco, for producing high quality mAbs in a Nicotiana benthamiana host.

View Article and Find Full Text PDF

Hendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding.

View Article and Find Full Text PDF

Three clinically relevant ebolaviruses - Ebola (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) viruses, are responsible for severe disease and occasional deadly outbreaks in Africa. The largest Ebola virus disease (EVD) epidemic to date in 2013-2016 in West Africa highlighted the urgent need for countermeasures, leading to the development and FDA approval of the Ebola virus vaccine rVSV-ZEBOV (Ervebo) in 2020 and two monoclonal antibody (mAb)-based therapeutics (Inmazeb [atoltivimab, maftivimab, and odesivimab-ebgn] and Ebanga (ansuvimab-zykl) in 2020. The humoral response plays an indispensable role in ebolavirus immunity, based on studies of mAbs isolated from the antibody genes in peripheral blood circulating ebolavirus-specific human memory B cells.

View Article and Find Full Text PDF

This review focuses on the emerging monoclonal antibody market for infectious diseases and the metric ton scale manufacturing requirements to meet global demand. Increasing access to existing antibody-based products coupled with the unmet need in infectious disease will likely exceed the current existing global manufacturing capacity. Further, the large numbers of individuals infected during epidemics such as the ongoing COVID-19 pandemic emphasizes the need to plan for metric ton manufacturing of monoclonal antibodies by expanding infrastructure and exploring alternative production systems.

View Article and Find Full Text PDF

Background: Approximately 40% of human pregnancies are unintended, indicating a need for more acceptable effective contraception methods. New antibody production systems make it possible to manufacture reagent-grade human monoclonal antibodies (mAbs) for clinical use. We used the Nicotiana platform to produce a human antisperm mAb and tested its efficacy for on-demand topical contraception.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein.

View Article and Find Full Text PDF
Article Synopsis
  • Hendra virus (HeV) and Nipah virus (NiV) are dangerous viruses that can cause severe respiratory problems and brain infections in humans, with very high fatality rates and no current vaccines or treatments available.
  • The viruses enter host cells using specific proteins (G and F) that are critical for their ability to cause disease, and previous studies have shown that antibodies targeting these proteins can offer protection.
  • Researchers have discovered two specific antibodies (1F5 and 12B2) that can neutralize both viruses by preventing their fusion with host cells, suggesting that a combination of these antibodies might be a promising strategy for developing effective treatments against HeV and NiV.
View Article and Find Full Text PDF