OleB is an α/β-hydrolase found in bacteria that biosynthesize long-chain olefinic hydrocarbons, but its function has remained obscure. We report that OleB from the Gram-negative bacterium Xanthomonas campestris performs an unprecedented β-lactone decarboxylation reaction, to complete cis-olefin biosynthesis. OleB reactions monitored by H nuclear magnetic resonance spectroscopy revealed a selectivity for decarboxylating cis-β-lactones and no discernible activity with trans-β-lactones, consistent with the known configuration of pathway intermediates.
View Article and Find Full Text PDFMotivation: Current methods for the prediction of biodegradation products and pathways of organic environmental pollutants either do not take into account domain knowledge or do not provide probability estimates. In this article, we propose a hybrid knowledge- and machine learning-based approach to overcome these limitations in the context of the University of Minnesota Pathway Prediction System (UM-PPS). The proposed solution performs relative reasoning in a machine learning framework, and obtains one probability estimate for each biotransformation rule of the system.
View Article and Find Full Text PDFMotivation: The University of Minnesota Pathway Prediction System (UM-PPS) is a rule-based expert system to predict plausible biodegradation pathways for organic compounds. However, iterative application of these rules to generate biodegradation pathways leads to combinatorial explosion. We use data from known biotransformation pathways to rationally determine biotransformation priorities (relative reasoning rules) to limit this explosion.
View Article and Find Full Text PDF