Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS).
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2011
A method is proposed for creating a non-equilibrium ensemble with a constant number of molecules, constant temperature and constant pressures with different target values in two reservoirs [referred to as NT(P(1)-P(2)) ensemble] that are connected by a finite length nanopore. This method includes two steps. The first step places a partition between the two reservoirs and then creates a static pressure field and a proper system volume by using two self-adjusting plates on which two external forces/pressures with different target values are exerted.
View Article and Find Full Text PDFThe effect of pore wall-liquid interaction on the liquid transport through a nanopore in a membrane was studied by an improved pressure-driven non-equilibrium molecular dynamics (NEMD) method. The NEMD results showed that pressures in the reservoirs were constant and were equal to the pressures externally exerted on the self-adjusting plates that drove the flow; pressures in the nanopore decreased monotonically in the stream-wise direction when the solid wall-liquid had weak or neutral interaction, but exhibited a different distribution pattern in the case of the solid wall-liquid exhibiting strong attractive interaction. The transport ability of the nanopore depended significantly on the pore wall-liquid interaction.
View Article and Find Full Text PDFThe entrance and exit effects on liquid transport through a nano-sized cylindrical pore under different solid wall-liquid interactions were studied by comparing molecular dynamics (MD) results of a finite length nanopore in a membrane with those of an infinite length one. The liquid transport through a finite length nanopore in a membrane was carried out by using a pressure-driven non-equilibrium molecular dynamics (NEMD) method proposed by Huang et al. [C.
View Article and Find Full Text PDFNumerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy.
View Article and Find Full Text PDFSteady state pressure driven flow of liquid argon through a finite length cylindrical nanopore was investigated numerically by classical Navier-Stokes (NS) hydrodynamic models and nonequilibrium molecular dynamics (MD) simulations. In both approaches, the nanopore was nominally 2.2 nm in diameter and 6 nm long.
View Article and Find Full Text PDFFluid transport through a nanopore in a membrane was investigated by using a novel molecular dynamics approach proposed in this study. The advantages of this method, relative to dual-control-volume grand-canonical molecular dynamics method, are that it eliminates disruptions to the system dynamics that are normally created by inserting or deleting particles from control volumes, and that it functions well for dense systems due to the number of particles being fixed in the system. Using the proposed method, we examined liquid argon transport through a nanopore by performing nonequilibrium molecular dynamics (NEMD) simulations under different back pressures.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2005
Pressure-driven flow of an electrolyte solution in a microchannel with charged solid surfaces induces a streaming potential across the microchannel. Such a flow also causes rejection of ions by the microchannel, leading to different concentrations in the feed and permeate reservoirs connecting the capillary, which forms the basis of membrane based separation of electrolytes. Modeling approaches traditionally employed to assess the streaming potential development and ion rejection by capillaries often present a confusing picture of the governing electrochemical transport processes.
View Article and Find Full Text PDFWe show, by natural occurring phenomena of charge separation near the solid-liquid interface in microchannels, that electricity can be generated by forcing water through a ceramic rod with no moving part and emission. A single hand push on a syringe is our source of power which easily generates a streaming potential of over 20 V and a streaming current of 30 microA. By means of streaming potentials, two capacitors were charged and discharged alternatively to light-up two Light-Emitting-Diodes in every ten seconds.
View Article and Find Full Text PDF