Publications by authors named "Larry W Duncan"

Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.

View Article and Find Full Text PDF

Understanding the diversity of soil organisms is complicated by both scale and substrate. Every footprint we leave in the soil covers hundreds to millions of organisms yet we cannot see them without extremely laborious extraction and microsopy endeavors. Studying them is also challenging.

View Article and Find Full Text PDF

The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae.

View Article and Find Full Text PDF

Manipulating soil properties to modify the dynamics between nematodes and their natural enemies has been proposed to conserve services such as the biological control of insect pests by entomopathogenic nematodes. Many soil microarthropods including acari mites and collembola are natural enemies of nematodes; however, little is known about the naturally occurring assemblages of these two soil dwelling groups and how they might be influenced by soil conditions. A method to efficiently recover both nematodes and microarthropods from environmental samples would be helpful to characterize communities of these two groups in different habitats.

View Article and Find Full Text PDF

Caribbean fruit fly, also known as Caribfly or Anastrepha suspensa , is a major tephritid pest of guavas. A virulent entomopathogenic nematode (EPN) species was investigated to suppress the fruit-to-soil stages of Caribflies, which are also attacked by the koinobiont parasitoid Diachasmimorpha longicaudata in south Florida. The main objective was to develop a feasible and cost-effective EPN-application method for integrated pest management (IPM) of Caribfly to improve guava production.

View Article and Find Full Text PDF

In two field surveys, high proportions of Galleria mellonella L. (Lepidoptera: Pyralidae) sentinel larval cadavers were infected by Fusarium solani without evidence of concomitant entomopathogenic nematode (EPN) or entomopathogenic fungus (EPF) reproduction. Because F.

View Article and Find Full Text PDF

Relationships between entomopathogenic nematodes (EPNs), nematophagous fungi (NF) and soil physical and chemical properties were studied in a survey of 53 citrus orchards in central ridge and flatwoods ecoregions of Florida. Seven species of NF associated with nematodes were quantified directly using a real time qPCR assay. All nematophagous fungi studied except Arthrobotrys musiformis and Hirsutella rhossiliensis were frequently detected (24-56%) in both regions.

View Article and Find Full Text PDF

Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D.

View Article and Find Full Text PDF

Background: Caribbean fruit fly (Caribfly) is a serious economic insect pest because of development of larvae that hatch from eggs oviposited into fruits by female adults. This study assessed the virulence of twelve entomopathogenic nematode (EPN) isolates to Caribfly in laboratory bioassays as a starting point toward evaluation of management strategies for the fruit-to-soil-dwelling stages of A. suspensa in fields infested by Caribfly.

View Article and Find Full Text PDF

Mining activities pollute the environment with by-products that cause unpredictable impacts in surrounding areas. Cartagena-La Unión mine (Southeastern-Spain) was active for >2500years. Despite its closure in 1991, high concentrations of metals and waste residues remain in this area.

View Article and Find Full Text PDF

Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi.

View Article and Find Full Text PDF

The geospatial patterns of four species of native entomopathogenic nematodes in Florida were previously shown to be related to soil properties that affect soil water potential. Here we compared the responses to water potential of third stage, infective juvenile (IJ), Steinernema sp. (Sx), and Steinernema diaprepesi (Sd) in controlled conditions.

View Article and Find Full Text PDF

Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response.

View Article and Find Full Text PDF

Plants defend themselves against herbivores both directly (chemical toxins and physical barriers) and indirectly (attracting natural enemies of their herbivores). Previous work has shown that plant roots of citrus defend against root herbivores by releasing an herbivore-induced plant volatile (HIPV), pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene), that attracts naturally occurring entomopathogenic nematodes (EPNs) to Diaprepes abbreviatus larvae when applied in the field. However, the soil community is complex and contains a diversity of interspecific relationships that modulate food web assemblages.

View Article and Find Full Text PDF

Entomopathogenic nematodes (EPNs) are promising biological control agents of soil-dwelling insect pests of many crops. These nematodes are ubiquitous in both natural and agricultural areas. Their efficacy against arthropods is affected directly and indirectly by food webs and edaphic conditions.

View Article and Find Full Text PDF

While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests.

View Article and Find Full Text PDF

Entomopathogenic nematodes (EPNs) are important pathogens of soilborne insects and are sometimes developed commercially to manage insect pests. Numerous nematophagous fungal species (NF) prey on nematodes and are thought to be important in regulating natural or introduced EPN populations. However, nematophagy by these fungi in nature cannot be inferred using existing methods to estimate their abundance in soil because many of these fungi are saprophytes, resorting to parasitism primarily when certain nutrients are limiting.

View Article and Find Full Text PDF

Greenhouse experiments were conducted to assess the influence of soil texture on the persistence, efficacy and plant protection ability of entomopathogenic nematodes (EPNs) applied to control larvae of the Diaprepes root weevil (DRW), Diaprepes abbreviatus, infesting potted citrus seedlings. Seedlings were grown in pots containing either coarse sand, fine sand, or sandy loam. Three DRW larvae were added to each of 80 pots of each soil type.

View Article and Find Full Text PDF

Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.

View Article and Find Full Text PDF

Laboratory experiments were conducted on the behavioral responses of five species of entomopathogenic nematodes (EPNs; Steinernema diaprepesi, Steinernema sp. glaseri-group, Steinernema riobrave, Heterorhabditis zealandica, Heterorhabditis indica) to three species of nematophagous fungi (NF; trapping fungus Arthrobotrys gephyropaga; endoparasites Myzocytium sp., Catenaria sp.

View Article and Find Full Text PDF

A nematode collected from Diaprepes abbreviatus is identified and described as a new species, Steinernema diaprepesi n. sp. The new species is closely related to S.

View Article and Find Full Text PDF