Publications by authors named "Larry Singh"

We present a genome assembly from an individual male (Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.41 gigabases in span.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response.

View Article and Find Full Text PDF

Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Objective: The effect of cardiac arrest (CA) on cerebral transcriptomics and metabolomics is unknown. We previously demonstrated hemodynamic-directed CPR (HD-CPR) improves survival with favorable neurologic outcomes versus standard CPR (Std-CPR). We hypothesized HD-CPR would preserve the cerebral transcriptome and metabolome compared to Std-CPR.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is linked to defects in mitochondrial oxidative phosphorylation (OXPHOS), with varying effects based on timing and organs involved.
  • Analysis of transcription profiles reveals that OXPHOS is initially suppressed in the nasopharyngeal area but shows increased activity in lung tissues of deceased patients.
  • The heart shows no rebound in OXPHOS function, indicating severe repression, suggesting that boosting mitochondrial gene expression could help alleviate COVID-19 severity.
View Article and Find Full Text PDF

Neurodegenerative disorders that are triggered by injury typically have variable and unpredictable outcomes due to the complex and multifactorial cascade of events following the injury and during recovery. Hence, several factors beyond the initial injury likely contribute to the disease progression and pathology, and among these are genetic factors. Genetics is a recognized factor in determining the outcome of common neurodegenerative diseases.

View Article and Find Full Text PDF

The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection.

View Article and Find Full Text PDF

Two siblings presented similarly with congenital hypotonia, lactic acidosis, and failure to thrive. Later in childhood, the brother developed cystinuria and nephrolithiasis whereas the older sister suffered from cystinuria and chronic neurobehavioral disturbances. Biopsied muscle studies demonstrated deficient cytochrome c oxidase activities consistent with a mitochondrial disease.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia, affects globally more than 30 million people suffering from cognitive deficits and neuropsychiatric symptoms. Substantial evidence for the involvement of mitochondrial dysfunction in the development and/or progression of AD has been shown in addition to the pathological hallmarks amyloid beta (Aβ) and tau. Still, the selective vulnerability and associated selective mitochondrial dysfunction cannot even be resolved to date.

View Article and Find Full Text PDF

Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection.

View Article and Find Full Text PDF

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen.

View Article and Find Full Text PDF

Objective: In individuals with mitochondrial disease, respiratory viral infection can result in metabolic decompensation with mitochondrial hepatopathy. Here, we used a mouse model of liver-specific Complex IV deficiency to study hepatic allostasis during respiratory viral infection.

Methods: Mice with hepatic cytochrome c oxidase deficiency (LivCox10) were infected with aerosolized influenza, A/PR/8 (PR8), and euthanized on day five after infection following three days of symptoms.

View Article and Find Full Text PDF

Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community.

View Article and Find Full Text PDF

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell gene expression studies in mammalian tissues reveal important stage-specific molecular processes that are crucial for understanding different cell types and their developmental pathways.
  • The authors propose the creation of a Pediatric Cell Atlas to be integrated into the Human Cell Atlas consortium, which will create detailed single-cell profiles of gene expression in human tissues and organs.
  • This Pediatric Cell Atlas will enhance existing research on adults and development, offering valuable insights into pediatric health issues and the genetic and environmental factors affecting health throughout one's lifetime.
View Article and Find Full Text PDF

Mitochondrial dysfunction has been implicated in the pathogenesis of primary open-angle glaucoma (POAG). However, the potential significance of mitochondrial DNA (mtDNA) haplogroups to POAG has not been evaluated in the overaffected African American population. To investigate the association of mtDNA haplogroups with POAG and its phenotypic characteristics, genotyping data from 4081 African American subjects (1919 cases and 2162 controls) was analyzed using 1293 positions on mtDNA.

View Article and Find Full Text PDF

Purpose: To determine whether mitochondrial DNA haplogroups or rare variants associate with primary open-angle glaucoma in subjects of European descent.

Methods: A case-control comparison of age- and sex-matched cohorts of 90 primary open-angle glaucoma patients and 95 population controls. Full mitochondrial DNA sequences from peripheral blood were generated by next-generation sequencing and compared to the revised Cambridge Reference Sequence to define mitochondrial haplogroups and variants.

View Article and Find Full Text PDF

Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNA nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N = 498, mean age 52 and N = 1002, mean age 44) and one from a non-urban environment (N = 501, mean age 57).

View Article and Find Full Text PDF

Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1-associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors.

View Article and Find Full Text PDF

Accurate transcription is required for the faithful expression of genetic information. To understand the molecular mechanisms that control the fidelity of transcription, we used novel sequencing technology to provide the first comprehensive analysis of the fidelity of transcription in eukaryotic cells. Our results demonstrate that transcription errors can occur in any gene, at any location, and affect every aspect of protein structure and function.

View Article and Find Full Text PDF