Background: Suboptimal nitrogen availability is a primary constraint for crop production in low-input agroecosystems, while nitrogen fertilization is a primary contributor to the energy, economic, and environmental costs of crop production in high-input agroecosystems. In this article we consider avenues to develop crops with improved nitrogen capture and reduced requirement for nitrogen fertilizer.
Scope: Intraspecific variation for an array of root phenotypes has been associated with improved nitrogen capture in cereal crops, including architectural phenotypes that colocalize root foraging with nitrogen availability in the soil; anatomical phenotypes that reduce the metabolic costs of soil exploration, improve penetration of hard soil, and exploit the rhizosphere; subcellular phenotypes that reduce the nitrogen requirement of plant tissue; molecular phenotypes exhibiting optimized nitrate uptake kinetics; and rhizosphere phenotypes that optimize associations with the rhizosphere microbiome.
Root system architecture (RSA) is of growing interest in implementing plant improvements with belowground root traits. Modern computing technology applied to images offers new pathways forward to plant trait improvements and selection through RSA analysis (using images to discern/classify root types and traits). However, a major stumbling block to image-based RSA phenotyping is image label noise, which reduces the accuracies of models that take images as direct inputs.
View Article and Find Full Text PDFClimate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce the negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species-crimson clover () and rye ()-and hypothesized that growing them in the mixture would ameliorate stress from drought or waterlogging.
View Article and Find Full Text PDFRoots are essential for acquiring water and nutrients to sustain and support plant growth and anchorage. However, they have been studied less than the aboveground traits in phenotyping and plant breeding until recent decades. In modern times, root properties such as morphology and root system architecture (RSA) have been recognized as increasingly important traits for creating more and higher quality food in the "Second Green Revolution".
View Article and Find Full Text PDFBarley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background.
View Article and Find Full Text PDFPlant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in understanding plant adaptation and the genetic architecture underlying complex traits at population scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural networks to segment the leaf body and visible venation of 2,906 leaf images obtained in the field. In contrast to previous methods, our approach (a) does not require experimental or image preprocessing, (b) uses the raw RGB images at full resolution, and (c) requires very few samples for training (e.
View Article and Find Full Text PDFPlant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development.
View Article and Find Full Text PDFA recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed () that encodes a putative AGO component, whose loss-of-function enhances root gravitropism.
View Article and Find Full Text PDFDrought stress reduces crop biomass yield and the profitability of rainfed agricultural systems. Evaluation of populations or accessions adapted to diverse geographical and agro-climatic environments sheds light on beneficial plant responses to enhance and optimize yield in resource-limited environments. This study used the morphological and physiological characteristics of leaves and roots from two different alfalfa subspecies during progressive drought stress imposed on controlled and field conditions.
View Article and Find Full Text PDFActive breeding programs specifically for root system architecture (RSA) phenotypes remain rare; however, breeding for branch and taproot types in the perennial crop alfalfa is ongoing. Phenotyping in this and other crops for active RSA breeding has mostly used visual scoring of specific traits or subjective classification into different root types. While image-based methods have been developed, translation to applied breeding is limited.
View Article and Find Full Text PDFNutrient use efficiency (NUE) is typically measured as the ratio of yield to soil nutrient availability but ignores contributions of underlying plant traits. Relevant plant traits can be grouped as root acquisition efficiency, shoot radiation use efficiency, and plant metabolic efficiency. The intentional integration of these traits will lead to synergistic improvements of NUE.
View Article and Find Full Text PDFThe root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. The uptake of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) from the soil is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization.
View Article and Find Full Text PDFRoots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited.
View Article and Find Full Text PDFRoots are central to the function of natural and agricultural ecosystems by driving plant acquisition of soil resources and influencing the carbon cycle. Root characteristics like length, diameter and volume are critical to measure to understand plant and soil functions. RhizoVision Explorer is an open-source software designed to enable researchers interested in roots by providing an easy-to-use interface, fast image processing and reliable measurements.
View Article and Find Full Text PDFDark respiration refers to experimental measures of leaf respiration in the absence of light, done to distinguish it from the photorespiration that occurs during photosynthesis. Dark aerobic respiration reactions occur solely in the mitochondria and convert glucose molecules from cytoplasmatic glycolysis and oxygen into carbon dioxide and water, with the generation of ATP molecules. Previous methods typically use oxygen sensors to measure oxygen depletion or complicated and expensive photosynthesis instruments to measure CO accumulation.
View Article and Find Full Text PDFIn the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies.
View Article and Find Full Text PDFThe response of plant growth and development to nutrient and water availability is an important adaptation for abiotic stress tolerance. Roots need to intercept both passing nutrients and water while foraging into new soil layers for further resources. Substantial amounts of nitrate can be lost in the field when leaching into groundwater, yet very little is known about how deep rooting affects this process.
View Article and Find Full Text PDFPlant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function.
View Article and Find Full Text PDFEcological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end.
View Article and Find Full Text PDFNutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis.
View Article and Find Full Text PDFThe root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO flux and the open-source software RhizoVision Explorer to analyze scanned images.
View Article and Find Full Text PDF