Publications by authors named "Larry L Green"

Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity.

View Article and Find Full Text PDF

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation.

View Article and Find Full Text PDF

Despite the widespread use of rituximab, a chimeric monoclonal antibody with demonstrated efficacy in the treatment of non-Hodgkin's lymphomas, there is a recognized need to develop new agents with improved efficacy. Towards this end, using XenoMouse technology, a fully human IgG1 anti-CD20 monoclonal antibody was generated. This antibody, denoted mAb 1.

View Article and Find Full Text PDF

We have developed a novel method of high-throughput Multiplexed Competitive Antibody Binning (MCAB). Using only a small amount of antibody and antigen, this method enables the sorting of a large, complex panel of monoclonal antibodies into different bins based on cross-competition for antigen binding. The MCAB assay builds on Luminex multiplexing bead-based technology to detect antibody competition.

View Article and Find Full Text PDF

Technical advances made in the 1980s and early 1990s resulted in monoclonal antibodies that are now approved for human therapy. Novel transgenic mouse strains provide a powerful technology platform for creating fully human monoclonal antibodies as therapeutics; ten such antibodies have entered clinical trials since 1998 and more are in preclinical testing. Improved transgenic mouse strains provide a powerful technology platform for creating human therapeutics in the future.

View Article and Find Full Text PDF