Publications by authors named "Larry Gruenke"

The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom.

View Article and Find Full Text PDF

The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al.

View Article and Find Full Text PDF

NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Since the distribution of electrons is governed solely by the redox potentials of the cofactors, there are nine different ways the electrons can be distributed and hence nine possible unique forms of the protein. More than one species of reductase will exist at a given level of oxidation except when the protein is either totally reduced or oxidized.

View Article and Find Full Text PDF