Publications by authors named "Larry Chamley"

During the first trimester of pregnancy, there is a large decrease in systemic vascular resistance (SVR) which coincides temporally with increasing extrusion of extracellular vesicles (EVs) from the placenta. We hypothesized that placental EVs may be one of the mechanisms contributing to maternal vasodilation. Macro-, micro-, nano-EVs from human first trimester placenta, or control injections containing EVs derived from fresh culture media, were injected into pregnant mice at day 12.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) have emerged as attractive drug delivery systems. However, the intracellular release of their cargoes is restricted. This study aimed to develop an efficient approach to re-engineer sEVs by hybridisation with pH-sensitive liposomes (PSLs) and investigate their endosome escape potential.

View Article and Find Full Text PDF

Notwithstanding the growing evidence of improved drug delivery efficiency to the brain by ligand modification of PEGylated liposomes, the comprehensive knowledge of their transport processes and payload across the BBB is yet to be revealed. Herein, this study sought to understand the glutathione (GSH) ligand effect on transcellular transport mechanisms of liposomes through the blood-brain barrier (BBB) by comparing PEGylated liposomes (PEG-L) and GSH PEGylated liposomes (GSH-PEG-L). Endocytosis and exocytosis of liposomes including the role of secreted extracellular vesicles (EVs) of brain endothelial cells (BECs) were assessed.

View Article and Find Full Text PDF

Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes.

View Article and Find Full Text PDF

Introduction: Extracellular vesicles are now believed to be important mediators of placental-maternal communication. However, little is known about the formation of extracellular vesicles by human placenta. This study uses nanoscale three-dimensional imaging to investigate how and where placental extracellular vesicles form.

View Article and Find Full Text PDF

Introduction: To investigate the role of placental extracellular vesicles (EVs), especially in pathological pregnancy, the use of freshly isolated EVs is often limited due to the sporadic and unpredictable availability of placental samples. Therefore, it is important to understand and use optimised storage conditions for placental EVs. In this study, we investigated different conditions for the short-term storage of placental micro- and nano-EVs and examined their biological activity.

View Article and Find Full Text PDF

Preeclampsia, characterised by maternal endothelial cell activation, is triggered by toxic factors, such as placental extracellular vesicles (EVs) from a dysfunctional placenta. The increased oxidative stress seen in the preeclamptic placenta links to endoplasmic reticulum (ER) stress. The ER regulates protein folding and trafficking.

View Article and Find Full Text PDF

Endothelial cell dysfunction in pregnancy, which can be induced by placental factors, is the fundamental component of the pathogenesis of pre-eclampsia. The dysfunctional vascular endothelium disrupts the balance of vasodilatory and vasoconstrictive factors, resulting in increasing blood pressure. There is currently no effective treatment for pre-eclampsia and effective control of hypertension may reduce neonatal morbidity and mortality by prolonging gestation, especially in cases of early onset disease.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-enclosed vesicles and act like 'messages in a bottle' in cell-cell communication by transporting their cargoes to recipient cells. Small EVs (sEVs, < 200 nm) are highly researched recently and have been harnessed as novel delivery systems for the treatment of various diseases, including neurodegenerative disorders, cardiovascular diseases, and most importantly cancer primarily because of their non-immunogenicity, tissue penetration and cell-tropism. This review will first provide a comprehensive overview of sEVs regarding the current understanding on their properties, biogenesis, new classification by the ISEV, composition, as well as their roles in cancer development (thereby called "oncosomes").

View Article and Find Full Text PDF

There is a significant and growing research interest in the isolation of extracellular vesicles (EVs) from large volumes of biological samples and their subsequent concentration into clean and small volumes of buffers, especially for applications in medical diagnostics. Materials that are easily incorporated into simple sampling devices and which allow the release of EVs without the need for auxiliary and hence contaminating reagents are particularly in demand. Herein, we report on the design and fabrication of a flexible, microporous, electrochemically switchable cloth that addresses the key challenges in diagnostic applications of EVs.

View Article and Find Full Text PDF

Background: It has been reported that during the culture of human placental explants, the syncytiotrophoblast dies between 3 and 24 h and is then replaced within 48 h by a new syncytiotrophoblast layer formed by the fusion of underlying cytotrophoblasts. Most frequently the death of the syncytiotrophoblast is indicated by the uptake of nuclear stains such as propidium iodide (PI). This process is reportedly similar in both early and late gestation placental explants.

View Article and Find Full Text PDF

Antiphospholipid autoantibodies (aPLs), a major maternal risk factor for preeclampsia, are taken into the syncytiotrophoblast where they bind intracellular vesicles and mitochondria. Subsequently, large quantities of extracellular vesicles (EVs) extruded from syncytiotrophoblast into the maternal circulation are altered such that they cause maternal endothelial cell activation. However, the mechanism driving this change is unknown.

View Article and Find Full Text PDF

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2018 there were nine themed workshops, five of which are summarised in this report. These workshops discussed new perspectives and knowledge in the following areas of research: 1) preeclampsia; 2) abnormally invasive placenta; 3) placental infection; 4) gestational trophoblastic disease; 4) drug delivery to treat placental dysfunction.

View Article and Find Full Text PDF

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2018 there were nine themed workshops, four of which are summarized in this report. These workshops discussed new knowledge and technological innovations in the following areas of research: 1) viviparity in ocean-living species; 2) placental imaging; 3) epigenetics; and 4) extracellular vesicles in pregnancy.

View Article and Find Full Text PDF

Background: The human placenta extrudes a variety of extracellular vesicles (EVs) into the maternal blood daily. These vesicles may be crucial to the adaptation of the maternal cardiovascular and immune systems to pregnancy. Quantifying the EVs that are released in early gestation is important to our understanding of how placental EVs may contribute to the regulation of maternal physiology.

View Article and Find Full Text PDF

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2017 there were four themed workshops, all of which are summarized in this report. These workshops discussed new knowledge and technological innovations in the following areas of research: 1) placental bed; 2) 3D structural modeling; 3) clinical placentology; 4) treatment of placental dysfunction.

View Article and Find Full Text PDF

Study Question: How do nano-vesicles extruded from normal first trimester human placentae affect maternal vascular function?

Summary Answer: Placental nano-vesicles affect the ability of systemic mesenteric arteries to undergo endothelium- and nitric oxide- (NO-) dependent vasodilation in vivo in pregnant mice.

What Is Known Already: Dramatic cardiovascular adaptations occur during human pregnancy, including a substantial decrease in total peripheral resistance in the first trimester. The human placenta constantly extrudes extracellular vesicles that can enter the maternal circulation and these vesicles may play an important role in feto-maternal communication.

View Article and Find Full Text PDF

Background: Preeclampsia and small-for-gestational-age pregnancy are major causes of maternal and perinatal morbidity and mortality. Women with a previous pregnancy affected by these conditions are at an increased risk of recurrence in a future pregnancy. Past trials evaluating the effect of low-molecular-weight heparin for the prevention of recurrence of preeclampsia and small-for-gestational-age pregnancy have shown conflicting results with high levels of heterogeneity displayed when trials were compared.

View Article and Find Full Text PDF

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2016 there were twelve themed workshops, four of which are summarized in this report. These workshops covered innovative technologies applied to new and traditional areas of placental research: 1) genomic communication; 2) bioinformatics; 3) trophoblast biology and pathology; 4) placental transport systems.

View Article and Find Full Text PDF

Objective: To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment.

Design: Prospective embryo cohort study.

Setting: Academic center and private in vitro fertilization (IVF) clinic.

View Article and Find Full Text PDF

Study Question: What proteins are carried by extracellular vesicles (EVs) released from normal first trimester placentae?

Summary Answer: One thousand five hundred and eighty-five, 1656 and 1476 proteins were characterized in macro-, micro- and nano-vesicles, respectively, from first trimester placentae, with all EV fractions being enriched for proteins involved in vesicle transport and inflammation.

What Is Known Already: Placental EVs are being increasingly recognized as important mediators of both healthy and pathological pregnancies. However, current research has focused on detecting changes in specific proteins in particular fractions of vesicles during disease.

View Article and Find Full Text PDF