Publications by authors named "Larregaray P"

Molecular dynamics simulations are performed to investigate the influence of isotope substitutions on the Eley-Rideal recombination dynamics of hydrogen isotopes from the (100) and (110) surfaces of tungsten. Dissipation of electrons and phonons is taken into account by, respectively, the local density friction approximation and the general Langevin oscillator, effective models which have been intensively used in recent years. As the coupling to surface phonons and electrons might be altered by the mass combination, the main objective of the paper is to assess the role of dissipation to the surface in the course of abstraction.

View Article and Find Full Text PDF

Hydrogen molecules dissociate on clean W(110) surfaces. This reaction is progressively inhibited as the tungsten surface is precovered with oxygen. We use density functional theory and ab initio molecular dynamics to rationalize, at the atomic scale, the influence of the adsorbed O atoms on the H dissociation process.

View Article and Find Full Text PDF

Molecular dynamics with electronic friction (MDEF) at the level of the local density friction approximation (LDFA) has been applied to describe electronically non-adiabatic energy transfer accompanying H atom collisions with many solid metal surfaces. When implemented with full dimensional potential energy and electron density functions, excellent agreement with experiment is found. Here, we compare the performance of a reduced dimensional MDEF approach involving a simplified description of H atom coupling to phonons to that of full dimensional MDEF calculations known to yield accurate results.

View Article and Find Full Text PDF

The reaction between atomic carbon in its ground electronic state, C(P), and nitrous oxide, NO, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50-296 K range using a continuous supersonic flow reactor. C(P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.

View Article and Find Full Text PDF

Originally conceived to describe thermal diffusion, the Langevin equation includes both a frictional drag and a random force, the latter representing thermal fluctuations first seen as Brownian motion. The random force is crucial for the diffusion problem as it explains why friction does not simply bring the system to a standstill. When using the Langevin equation to describe ballistic motion, the importance of the random force is less obvious and it is often omitted, for example, in theoretical treatments of hot ions and atoms interacting with metals.

View Article and Find Full Text PDF

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics. We have calculated the dissociation probability for molecules with energies below 300 meV and analyzed the dynamics of the adsorption process. Our results show that the fate of each trajectory is determined at distances relatively far from the surface, at roughly 2-2.

View Article and Find Full Text PDF

This study reports the results of an experimental and theoretical investigation of the N(2D) + H2 and N(2D) + D2 reactions at room temperature and below. On the experimental side, a supersonic flow (Laval nozzle) reactor was employed to measure rate constants for these processes at temperatures as low as 127 K. N(2D) was produced indirectly by pulsed laser photolysis and these atoms were detected directly by pulsed laser induced fluorescence in the vacuum ultraviolet wavelength region.

View Article and Find Full Text PDF

The classical trajectory method in a quantum spirit assigns statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was recently applied to the heterogeneous gas-surface reaction between H2 in its internal ground state and Pd(111) surface e.g.

View Article and Find Full Text PDF

The energy dependence of quantum complex-forming reaction probabilities is well known to involve sharp fluctuations, but little seems to be known about their amplitudes. We develop here, for triatomic reactions, an analytical approach of their statistical distribution. This approach shows that the fluctuation amplitudes depend essentially on the number of available quantum states in the reagent and product channels.

View Article and Find Full Text PDF

When elementary reactive processes occur at such low energies that only a few states of reactants and/or products are available, quantum effects strongly manifest and the standard description of the dynamics within the classical framework fails. We show here, for H scattering on Pd(111), that by pseudoquantizing in the spirit of Bohr the relevant final actions of the system, along with adequately treating the diffraction-mediated trapping of the incoming wave, classical simulations achieve an unprecedented agreement with state-of-the-art quantum dynamics calculations.

View Article and Find Full Text PDF

This work addresses the kinetics and dynamics of the gas-phase reaction between O(D) and HD molecules down to low temperature. Here, measurements were performed by using a supersonic flow (Laval nozzle) reactor coupled with pulsed laser photolysis for O(D) production and pulsed-laser-induced fluorescence for O(D) detection to obtain rate constants over the 50-300 K range. Additionally, temperature-dependent branching ratios (OD + H/OH + D) were obtained experimentally by comparison of the H/D atom atom yields with those of a reference reaction.

View Article and Find Full Text PDF

The dynamics of the Si(P) + OH(XΠ) → SiO(XΣ,',') + H(S) reaction is investigated by means of the quasi-classical trajectory method on the electronic ground state XA' potential energy surface in the 10-1 eV collision energy range. Although the reaction involves the formation of a long-lived intermediate complex, a high probability for back-dissociation to the reactants is found because of inefficient intravibrational redistribution of energy among the complex modes. At low collision energies, the reactive events are governed by a dynamics with mixed direct/indirect features.

View Article and Find Full Text PDF

For some values of the total angular momentum consistent with reaction, the title processes involve nonreactive trajectories proceeding through a single rebound mechanism during which the internal motion of the reagent diatom is nearly unperturbed. When such paths are in a significant amount, the classical reaction probability is found to be markedly lower than the quantum mechanical one. This finding was recently attributed to an unusual quantum effect called diffraction-mediated trapping, and a semiclassical correction was proposed in order to take into account this effect in the classical trajectory method.

View Article and Find Full Text PDF

Adiabatic and nonadiabatic quasi-classical molecular dynamics simulations are performed to investigate the role of electron-hole pair excitations in hot-atom and Eley-Rideal H2 recombination mechanisms on H-covered W(100). The influence of the surface structure is analyzed by comparing with previous results for W(110). In the two surfaces, hot-atom abstraction cross sections are drastically reduced due to the efficient energy exchange with electronic excitations at low incident energies and low coverage, while the effect on Eley-Rideal reactivity is negligible.

View Article and Find Full Text PDF

The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional. The dynamics are compared to those obtained using the PW91 functional and to experimental data. The results show that the new PES provides a significant improvement in the description of the reactivity in this system.

View Article and Find Full Text PDF

We present results of a theoretical investigation on the dynamics of the C(D)+H reaction and the corresponding isotopic variants in which the carbon atom collides either with D or HD. Statistical techniques have been tested in comparison with the recent experimental information at low temperature (T < 300 K) and exact quantum mechanical calculations reported on the title reactions in an attempt to establish their possible complex-forming character. Our study includes the calculation of probabilities, rotational distributions, integral cross sections, differential cross sections, and rate constants.

View Article and Find Full Text PDF

The O(D) + H reaction is a prototype for simple atom-diatom insertion type mechanisms considered to involve deep potential wells. While exact quantum mechanical methods can be applied to describe the dynamics, such calculations are challenging given the numerous bound quantum states involved. Consequently, efforts have been made to develop alternative theoretical strategies to portray accurately the reactive process.

View Article and Find Full Text PDF

Adiabatic and non-adiabatic quasiclassical molecular dynamics simulations are performed to investigate the role of the crystal face on hot-atom abstraction of H adsorbates by H scattering from covered W(100) and W(110). On both cases, hyperthermal diffusion is strongly affected by the energy dissipated into electron-hole pair excitations. As a result, the hot-atom abstraction is highly reduced in favor of adsorption at low incidence energy and low coverages, i.

View Article and Find Full Text PDF

Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering. The hot-atom recombination, which involves hyperthermal diffusion of the impinging atom on the surface, is significantly affected by the dissipation of energy mediated by electron-hole pair excitations at low coverage and low incidence energy. This issue is of importance as this abstraction mechanism is thought to largely contribute to molecular hydrogen formation from metal surfaces.

View Article and Find Full Text PDF

The excitation function of the S((1)D) + D2 reaction was determined in a crossed molecular beam apparatus for collision energies ranging from 1817 to 47 J mol(-1) in the near-cold regime. A very good overall agreement was found between experimental data and the theoretical results obtained using the ab initio potential energy surface built by Ho and coworkers and different methods: time-independent quantum dynamics (QM), semiclassical mean potential capture theory (sc-MPCT), and quasi-classical trajectories (QCT). The general trend of the experimental excitation function is well reproduced in most of the range by a simple capture calculation with an R(-6) dispersion potential.

View Article and Find Full Text PDF

We argue that statistical theories are generally unable to accurately predict state-resolved differential cross sections for triatomic bimolecular reactions studied in beam experiments, even in the idealized limit where the dynamics are fully chaotic. The basic reason is that quenching of interferences between partial waves is less efficient than intuitively expected, especially around the poles.

View Article and Find Full Text PDF

Dynamics of the Eley-Rideal (ER) abstraction of H2 from W(110) is analyzed by means of quasi-classical trajectory calculations. Simulations are based on two different molecule-surface potential energy surfaces (PES) constructed from Density Functional Theory results. One PES is obtained by fitting, using a Flexible Periodic London-Eyring-Polanyi-Sato (FPLEPS) functional form, and the other by interpolation through the corrugation reducing procedure (CRP).

View Article and Find Full Text PDF

Quasiclassical trajectories simulations are performed to study the influence of surface temperature on the dynamics of a N atom colliding a N-preadsorbed W(100) surface under normal incidence. A generalized Langevin surface oscillator scheme is used to allow energy transfer between the nitrogen atoms and the surface. The influence of the surface temperature on the N(2) formed molecules via Eley-Rideal recombination is analyzed at T = 300, 800, and 1500 K.

View Article and Find Full Text PDF

We study theoretically and experimentally the electronic relaxation of NO(2) molecules excited by absorption of one ∼400 nm pump photon. Semiclassical simulations based on trajectory surface hopping calculations are performed. They predict fast oscillations of the electronic character around the intersection of the ground and first excited diabatic states.

View Article and Find Full Text PDF

The scattering of atomic nitrogen over a N-pre-adsorbed W(100) surface is theoretically described in the case of normal incidence off a single adsorbate. Dynamical reaction mechanisms, in particular Eley-Rideal (ER) abstraction, are scrutinized in the 0.1-3.

View Article and Find Full Text PDF