Publications by authors named "Larousse Khosravi-Khorashad"

Nanostructures such as nanoribbons and -wires are of interest as components for building integrated photonic systems, especially if their basic functionality as dielectric waveguides can be extended by chiroptical phenomena or modifications of their optoelectronic properties by extended defects, such as dislocations. However, conventional optical measurements typically require monodisperse (and chiral) ensembles, and identifying emerging chiral optical activity or dislocation effects in single nanostructures has remained an unmet challenge. Here we show that whispering gallery modes can probe chirality and dislocation effects in single nanowires.

View Article and Find Full Text PDF

Localized plasmons formed in ultrathin metallic nanogaps can lead to robust absorption of incident light. Plasmonic metasurfaces based on this effect can efficiently generate energetic charge carriers, also known as hot electrons, owing to their ability to squeeze and enhance electromagnetic fields in confined subwavelength spaces. However, it is very challenging to accurately identify and quantify the dynamics of hot carriers, mainly due to their ultrafast time decay.

View Article and Find Full Text PDF

Background: Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial-temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions.

View Article and Find Full Text PDF

2D/layered semiconductors are of interest for fundamental studies and for applications in optoelectronics and photonics. Work to date focused on extended crystals, produced by exfoliation or growth and investigated by diffraction-limited spectroscopy. Processes such as vapor-liquid-solid (VLS) growth carry potential for mass-producing nanostructured van der Waals semiconductors with exceptionally high crystal quality and optoelectronic/photonic properties at least on par with those of extended flakes.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is one of the most powerful and versatile optical super-resolution techniques. Compared with other super-resolution methods, SIM has shown its unique advantages in wide-field imaging with high temporal resolution and low photon damage. However, traditional SIM only has about 2 times spatial resolution improvement compared to the diffraction limit.

View Article and Find Full Text PDF

Ultrathin van der Waals semiconductors have shown extraordinary optoelectronic and photonic properties. Propagating photonic modes make layered crystal waveguides attractive for photonic circuitry and for studying hybrid light-matter states. Accessing guided modes by conventional optics is challenging due to the limited spatial resolution and poor out-of-plane far-field coupling.

View Article and Find Full Text PDF

Single-particle spectroscopy is central to the characterization of plasmonic nanostructures and understanding of light-matter interactions in chiral nanosystems. Although chiral plasmonic nanostructures are generally characterized by their circular differential extinction and scattering, single-particle absorption studies can extend our understanding of light-matter interactions. Here, we introduce an experimental observation of photothermal chirality which originated from circular differential absorption of chiral plasmonic nanostructures.

View Article and Find Full Text PDF

The realization of chiral photochemical reactions at the molecular level has proven to be a challenging task, with invariably low efficiencies originating from very small optical circular dichroism signals. On the contrary, colloidal nanocrystals offer a very large differential response to circularly polarized light when designed with chiral geometries. We propose taking advantage of this capability, introducing a novel mechanism driving surface photochemistry in a chiral nanocrystal.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) can be found in different shapes and sizes, which determine their chemical and physical characteristics. Physical and chemical properties of metallic NPs can be tuned by changing their shape, size, and surface chemistry; therefore, this has led to their use in a wide variety of applications in many industrial and academic sectors. One of the features of metallic NPs is their ability to act as optothermal energy converters, where they absorb light at a specific wavelength and heat up their local nanosurfaces.

View Article and Find Full Text PDF

Chiral photochemistry remains a challenge because of the very small asymmetry in the chiro-optical absorption of molecular species. However, we think that the rapidly developing fields of plasmonic chirality and plasmon-induced circular dichroism demonstrate very strong chiro-optical effects and have the potential to facilitate the development of chiral photochemistry and other related applications such as chiral separation and sensing. In this study, we propose a new type of chiral spectroscopy-photothermal circular dichroism.

View Article and Find Full Text PDF

The structure adopted by biomaterials, such as proteins, at interfaces is a crucial parameter in a range of important biological problems. It is a critical property in defining the functionality of cell/bacterial membranes and biofilms (i.e.

View Article and Find Full Text PDF

Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island.

View Article and Find Full Text PDF

Within the broad interest of assembling chiral left- and right-handed helices of plasmonic nanoparticles (NPs), we introduce the DNA-guided organization of left- or right-handed plasmonic Au NPs on DNA scaffolds. The method involves the self-assembly of stacked 12 DNA quasi-rings interlinked by 30 staple-strands. By the functionalization of one group of staple units with programmed tether-nucleic acid strands and additional staple elements with long nucleic acid chains, acting as promoter strands, the promoter-guided assembly of barrels modified with 12 left- or right-handed tethers is achieved.

View Article and Find Full Text PDF

Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these 'hotspots' has previously been accomplished through inefficient 'top-down' methods.

View Article and Find Full Text PDF

The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds.

View Article and Find Full Text PDF

Metallic nanostructures can be used to manipulate light on the subwavelength scale to create tailored optical material properties. Next to electric responses, artificial optical magnetism is of particular interest but difficult to achieve at visible wavelengths. DNA-self-assembly has proved to serve as a viable method to template plasmonic materials with nanometer precision and to produce large quantities of metallic objects with high yields.

View Article and Find Full Text PDF