Publications by authors named "Larm J"

NARSAD Artworks.

J Psychosoc Nurs Ment Health Serv

February 2022

View Article and Find Full Text PDF

Central infusions of angiotensin IV enhance spatial learning, memory retention and retrieval, neurotransmitter release, and long-term potentiation via interaction with a specific, high-affinity binding site. This site was recently purified and identified as the insulin-regulated aminopeptidase (IRAP). This enzyme was previously characterized as the marker protein of specialized insulin-responsive vesicles containing GLUT4 in muscle and adipose tissue.

View Article and Find Full Text PDF

Neocortex contains very few galanin neurons but receives a moderate galanin innervation from various subcortical loci. Recent data suggest that galanin helps regulate the tonic neuronal excitability of hippocampus and probably cerebral cortex but relatively little is known about the anatomy and functional regulation of cortical galanin systems. Therefore, we examined, in the rat, the effect of the intense but benign stimulus, cortical spreading depression (CSD), on the expression of galanin and galanin receptors (GalR1 and GalR2) in the neocortex and associated regions, revealing complex, multicellular responses.

View Article and Find Full Text PDF

Galanin and galanin receptors are widely expressed by neurons in rat brain that either synthesize/release and/or are responsive to, classical transmitters such as gamma-aminobutyric acid, acetylcholine, noradrenaline, histamine, dopamine and serotonin (5-hydroxytryptamine, 5-HT). The dorsal raphé nucleus (DRN) contains approximately 50% of the 5-HT neurons in the rat brain and a high percentage of these cells coexpress galanin and are responsive to exogenous galanin in vitro. However, the precise identity of the galanin receptor(s) present on these 5-HT neurons has not been previously established.

View Article and Find Full Text PDF

Neurones of the supraoptic nucleus (SON) and the magnocellular and parvocellular divisions of the paraventricular nucleus (PVN) express galanin and [125I]galanin binding sites. Although the precise role(s) of galanin in these different cell populations is still unknown, it has been shown to regulate the electrophysiological, neurochemical and secretory activity of magnocellular neurones. In light of the well-described effects of hyperosmotic stimuli, such as salt-loading on magnocellular neurone activity and galanin synthesis and release, and the recent identification of multiple galanin receptors in brain, this study assessed the possible regulation of galanin receptor subtype expression in the PVN/SON of salt-loaded, dehydrated and food-deprived rats.

View Article and Find Full Text PDF

Galanin-like peptide (GALP) was recently identified in the porcine hypothalamus, pituitary gland and gut, and has reported selectivity for the GalR2, c.f. the GalR1 receptor.

View Article and Find Full Text PDF

1. Galanin peptide and galanin receptor-binding sites are known to be widely distributed within the central nervous system, particularly in the hypothalamus in the preoptic area, the paraventricular (PVN) and supraoptic (SON) nuclei and the arcuate nucleus/median eminence. 2.

View Article and Find Full Text PDF

The present study employed 35S-labelled oligonucleotides and in situ hybridization to examine the distribution in the developing rat brain of mRNA encoding two galanin receptor subtypes, i.e. Gal-R1 and Gal-R2.

View Article and Find Full Text PDF

Galanin-like peptide (GALP) is a novel 60-amino acid neuropeptide, isolated from porcine hypothalamus and subsequently identified in rats and humans, which has reported selectivity for the Gal-R2 galanin receptor [Ohtaki T et al: J Biol Chem 1999; 274: 37041-37045]. In the current study, the regional and cellular distribution of GALP mRNA in rat brain has been investigated by in situ hybridization of [(35)S]-labelled oligonucleotide probes. In a thorough screening of adult male rat brain, GALP mRNA expression was detected only throughout the rostrocaudal extent of the arcuate nucleus (ARC) with the most abundant hybridization signal in the posterior, periventricular zones.

View Article and Find Full Text PDF

We have investigated the involvement of c-Jun in cell death induced by exposure of primary cultures of murine cerebellar granule cells to the glutamate receptor agonist kainate (KA) and evaluated its possible use as a marker for apoptosis. Using cerebellar granule cell neurones from postnatal day 7 mice, we found that 1 hr exposure to KA (1-1000 microM) induced a concentration-dependent neuronal cell death with characteristic apoptotic morphology, including cell shrinkage, neurite blebbing and DNA fragmentation. In addition KA-induced a concentration-dependent expression of c-Jun mRNA and protein as determined by in situ hybridization and immunocytochemistry respectively.

View Article and Find Full Text PDF

Domoic acid, a naturally occurring kainoid, has been responsible for several outbreaks of fatal poisoning after shellfish ingestion, and we examined its neurotoxic mechanism in cultured murine cortical neurones. Using observations of neuronal viability and morphology, exposure to domoic acid for 24 h was found to induce substantial concentration-dependent neuronal cell death. Domoic acid-mediated neuronal death was attenuated by the non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-selective antagonist LY293558 ((3S,4aR,6R,8aR)-6-[2-(1H-tetrazol-5-yl)-ethyl]-1,2,3, 4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid), but unaffected by NS-102 (5-nitro-6,7,8,9-tetrahydrobenzo[g]indole-2, 3-dione-3-oxime)--a low-affinity kainate receptor antagonist.

View Article and Find Full Text PDF

We have investigated the mechanisms of cell death induced by long-term exposure to the glutamate receptor agonist (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [(S)-AMPA]. Using primary cultures of pure neurons (95%) grown in serum-free conditions, we found that 24-h exposure to (S)-AMPA (0.01-1,000 microM) induced concentration-dependent neuronal cell death (EC50 = 3 +/- 0.

View Article and Find Full Text PDF

Neurones of the cerebral cortex immunoreactive for the neuropeptide, cholecystokinin (CCK), also invariably contain GABA. Hence CCK is believed to modulate some aspect of GABAergic synaptic activity. The present study therefore investigated the effects of CCK on basal, K(+)- and L-glutamate-induced release of [3H]GABA from slices of rat neocortex and cultured murine neocortical neurones.

View Article and Find Full Text PDF

In the presence of effectors variations in the two recognized activities of the plasma membrane NADH-oxidoreductase system were studied in separate, specific in vitro assays. We report here that ubiquinone analogues that contain a short, less hydrophobic side chain than coenzyme Q-10 dramatically stimulate the NADH-oxidase activity of isolated rat liver plasma membranes whereas they show no effect on the reductase activity of isolated membranes. If measured in assays of the NADH:ferricyanide reductase of living cultured cells these compounds have only a limited effect; the oxidase activity of whole cells is not measurable in our hands.

View Article and Find Full Text PDF

We have examined the neurotoxic effects of kainate, (S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and the novel AMPA-receptor preferring agonist (S)-5-fluorowillardiine in murine cultured cortical neurones. Kainate induced > 90% cell death (EC50 65 microM) and (S)-AMPA only about 50% cell death (EC50 3.1 microM), both in a monophasic dose-dependent manner.

View Article and Find Full Text PDF

Activation of the plasma membrane NADH-oxidoreductase (PMOR) system by addition of growth factors or extracellular electron acceptors stimulates cellular proliferation. We now show that the vanilloids capsaicin, dihydrocapsaicin, and resiniferatoxin are inhibitors of the NADH-oxidase activity of the PMOR system and that both these and two previously identified PMOR inhibitors (chloroquine and retinoic acid) induce apoptosis in human B-cell and mouse myeloid cell lines. At the optimal concentration, PMOR inhibitors can induce between 50 and 70% of apoptosis in mouse myeloid and human B-cell lines within 8-12 h, provided these cell lines do not express Bcl-2.

View Article and Find Full Text PDF

We have studied aspects of the regulatory interrelationship between the plasma membrane oxidoreductase (PMOR) system and the mitochondrial respiratory capacity of human Namalwa cells. Although the role of mitochondria in the maintenance of cellular redox and energetic states is well established, the PMOR system in comparison is a poorly characterized enzyme system whose functions, particularly in relation to cellular metabolism, have not been clearly elucidated. Therefore we compared the PMOR and mitochondrial respiratory activities of human Namalwa cells during the induction by ethidium bromide treatment of rho 0 cells, which lack a functional mitochondrial respiratory system.

View Article and Find Full Text PDF