Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors. For many qubit technologies, some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances.
View Article and Find Full Text PDFThis tutorial review presents an overview of strategies for the synthesis and fabrication of organic nanomaterials, specifically those with potential for use in medical applications. Examples include liposomes, micelles, polymer-drug conjugates and dendrimers. Methods of driving shape via"bottom-up" synthetic approaches and thermodynamics and kinetics are discussed.
View Article and Find Full Text PDFA versatile "top-down" method for the fabrication of particles, Particle Replication In Nonwetting Templates (PRINT), is described which affords absolute control over particle size, shape, and composition. This technique is versatile and general enough to fabricate particles with a variety of chemical structures, yet delicate enough to be compatible with sophisticated biological agents. Using PRINT, we have fabricated monodisperse particles of poly(ethylene glycol diacrylate), triacrylate resin, poly(lactic acid), and poly(pyrrole).
View Article and Find Full Text PDFThe crystallization of calcium carbonate into microspheres has been accomplished using the rationally-designed, doubly-hydrophilic block copolypeptide poly(Nepsilon-2[2-(2-methoxyethoxy)ethoxy]acetyl-L-lysine)(100)-b-poly(L-aspartate sodium salt)30 as a structure-directing agent.
View Article and Find Full Text PDFNanoparticle vesicles were spontaneously assembled from homopolymer polyamine polyelectrolytes and water-soluble, citrate-stabilized quantum dots. The further addition of silica nanoparticles to a solution of quantum dot vesicles generated stable micrometer-sized hollow spheres whose walls were formed of a thick, inner layer of close-packed quantum dots followed by an outer layer of silica. The method employed here to assemble both the nanoparticle vesicles and the hollow spheres is in direct contrast to previous syntheses that use either tailored block copolymers or oil-in-water emulsion templating.
View Article and Find Full Text PDF