Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride (TG) synthesis and has been shown to play a role in regulating hepatic very-low-density lipoprotein (VLDL) production in rodents. To explore the potential of DGAT2 as a therapeutic target for the treatment of dyslipidemia, we tested the effects of small-molecule inhibitors and gene silencing both in vitro and in vivo. Consistent with prior reports, chronic inhibition of DGAT2 in a murine model of obesity led to correction of multiple lipid parameters.
View Article and Find Full Text PDFDGAT2 plays a critical role in hepatic triglyceride production, and data suggests that inhibition of DGAT2 could prove to be beneficial in treating a number of disease states. This article documents the discovery and optimization of a selective small molecule inhibitor of DGAT2 as well as pharmacological proof of biology in a mouse model of triglyceride production.
View Article and Find Full Text PDFMass spectrometry offers significant advantages over other detection technologies in the areas of hit finding, hit validation, and medicinal chemistry compound optimization. The foremost obvious advantage is the ability to directly measure enzymatic product formation. In addition, the inherent sensitivity of the liquid chromatography/mass spectrometry (LC/MS) approach allows the execution of enzymatic assays at substrate concentrations typically at or below substrate Km.
View Article and Find Full Text PDFOur ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g.
View Article and Find Full Text PDFObjectives: In this study, our goal was to determine if human resistin plays a role in regulating the uptake of atherogenic low-density lipoproteins in human hepatocytes.
Background: Serum levels of resistin, an adipose tissue-derived adipokine, are increased in human obesity and are positively correlated with atherosclerotic cardiovascular diseases. However, the function of resistin in humans is enigmatic.
In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures.
View Article and Find Full Text PDFNiacin is an effective drug for raising HDL cholesterol. However, niacin must be taken in large doses and significant side effects are often observed, including facial flushing, loss of glucose tolerance, and liver toxicity. An anthranilic acid was identified as an agonist of the niacin receptor.
View Article and Find Full Text PDFBiaryl cyclohexene carboxylic acids were discovered as full and potent niacin receptor (GPR109A) agonists. Compound 1e (MK-6892) displayed excellent receptor activity, good PK across species, remarkably clean off-target profiles, good ancillary pharmacology, and superior therapeutic window over niacin regarding the FFA reduction versus vasodilation in rats and dogs.
View Article and Find Full Text PDFNiacin is an effective drug for raising HDL cholesterol and reducing coronary risks, but patients show low compliance with treatment due to severe facial flushing upon taking the drug. A series of bicyclic pyrazole carboxylic acids were synthesized and tested for their ability to activate the niacin receptor. One analog, 23, showed improved potency and lacked flushing at doses that effectively altered the lipid profile of rats.
View Article and Find Full Text PDFTricyclic analogues were rationally designed as the high affinity niacin receptor G-protein-coupled receptor 109A (GPR109A) agonists by overlapping three lead structures. Various tricyclic anthranilide and cycloalkene carboxylic acid full agonists were discovered with excellent in vitro activity. Compound 2g displayed a good therapeutic index regarding free fatty acids (FFA) reduction and vasodilation effects in rats, with very weak cytochrome P450 2C8 (CYP2C8) and cytochrome P450 2C9 (CYP2C9) inhibition, and a good mouse pharmacokinetics (PK) profile.
View Article and Find Full Text PDFPyrazolopyrimidines were discovered as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. In addition to its intrinsic activity, compound 9n significantly enhances nicotinic acid binding to the receptor, thereby potentiating the functional efficacy of nicotinic acid.
View Article and Find Full Text PDFBiaryl anthranilides are reported as potent and selective full agonists for the high affinity niacin receptor GPR109A. The SAR presented outlines approaches to reduce serum shift and both CYPCYP2C8 and CYP2C9 liabilities, while improving PK and maintaining excellent receptor activity. Compound 2i exhibited good in vivo antilipolytic efficacy while providing a significantly improved therapeutic index over vasodilation (flushing) with respect to niacin in the mouse model.
View Article and Find Full Text PDFBackground: Triacylglyerol-rich very low density lipoprotein (VLDL) particles are the primary carriers of fatty acids in the circulation and as such serve as a rich energy source for peripheral tissues. Receptor-mediated uptake of these particles is dependent upon prior association with apolipoprotein E (apoE-VLDL) and is brought about by cell surface heparan sulfate proteoglycans (HSPG) in some cell types and by the low density lipoprotein receptor-related protein (LRP) in others. Although LRP's role in apoE-VLDL uptake has been well studied, the identity of the HSPG family member that mediates apoE-VLDL uptake has not been established.
View Article and Find Full Text PDFBackground: Transport of fatty acids within the cytosol of adipocytes and their subsequent assimilation into lipid droplets has been thoroughly investigated; however, the mechanism by which fatty acids are transported across the plasma membrane from the extracellular environment remains unclear. Since triacylglycerol-rich lipoproteins represent an abundant source of fatty acids for adipocyte utilization, we have investigated the expression levels of cell surface lipoprotein receptors and their functional contributions toward intracellular lipid accumulation; these include very low density lipoprotein receptor (VLDL-R), low density lipoprotein receptor-related protein (LRP), and heparan sulfate proteoglycans (HSPG).
Results: We found that expression of these three lipoprotein receptors increased 5-fold, 2-fold, and 2.
It has been proposed that clearance of cholesterol-enriched very low density lipoprotein (VLDL) particles occurs through a multistep process beginning with their initial binding to cell-surface heparan sulfate proteoglycans (HSPG), followed by their uptake into cells by a receptor-mediated process that utilizes members of the low density lipoprotein receptor (LDLR) family, including the low density lipoprotein receptor-related protein (LRP). We have further explored the relationship between HSPG binding of VLDL and its subsequent internalization by focusing on the LRP pathway using a cell line deficient in LDLR. In this study, we show that LRP and HSPG are part of a co-immunoprecipitable complex at the cell surface demonstrating a novel association for these two cell surface receptors.
View Article and Find Full Text PDF