Publications by authors named "Larissa Wakefield"

Human arylamine N-acetyltransferase 1 (NAT1), a polymorphic xenobiotic metabolising enzyme, has been investigated in relation to susceptibility and prognosis in certain types of cancer. Both human NAT1 and its murine equivalent NAT2 have previously been shown to play roles in the catabolism of folate, which is required for the synthesis of S-adenosylmethionine, the methyl donor for cellular methylation reactions. We have tested whether the expression of mouse Nat2 is subject to epigenetic regulation, specifically CpG methylation in the promoter region, by determining levels of 5-methylcytosine by bisulphite sequencing and methylation-specific PCR.

View Article and Find Full Text PDF

There is increasing evidence that human arylamine N-acetyltransferase type 1 (NAT1, EC 2.3.1.

View Article and Find Full Text PDF

Previous work on Dilantin- and hydrocortisone-induced cleft palate and cleft lip with or without cleft palate using congenics for the N-acetyltransferase loci (Nat1 and Nat2 are closely linked) and recombinant inbred lines implicated the Nat1,2 region in susceptibility to teratogen-induced orofacial clefting. Since Nat1 does not differ between the two strains, Nat2 appeared to be responsible. We have now tested this conclusion using transgenics and knockouts.

View Article and Find Full Text PDF

The prognosis for patients with estrogen receptor (ER)-positive breast cancer has improved significantly with the prescription of selective ER modulators (SERMs) for ER-positive breast cancer treatment. However, only a proportion of ER-positive tumors respond to SERMs, and resistance to hormonal therapies is still a major problem. Detailed analysis of published microarray studies revealed a positive correlation between overexpression of the drug metabolizing enzyme arylamine N-acetyltransferase type 1 (NAT1) and ER positivity, and increasing evidence supports a biological role for NAT1 in breast cancer progression.

View Article and Find Full Text PDF

The mouse arylamine N-acetyltransferase 2 (Nat2) and its homologue (NAT1) in humans are known to detoxify xenobiotic arylamines and are also thought to play a role in endogenous metabolism. Human NAT1 is highly over-expressed in estrogen receptor positive breast tumours and is implicated in susceptibility to neural tube defects. In vitro assays have suggested an endogenous role for human NAT1 in folate metabolism, but in vivo evidence to support this hypothesis has been lacking.

View Article and Find Full Text PDF

Arylamine N-acetyltransferase (NAT) genes in humans and in rodents encode polymorphic drug metabolizing enzymes. Human NAT1 (and the murine equivalent mouse Nat2) is found early in embryonic development and is likely to have an endogenous role. We report the detailed expression of the murine gene (Nat2) and encoded protein in mouse embryos, using a transgenic mouse model bearing a lacZ transgene inserted into the coding region of mouse Nat2.

View Article and Find Full Text PDF

The xenobiotic metabolizing enzyme, mouse arylamine N-acetyltransferase type 2 (Nat2), is expressed during embryogenesis from the blastocyst stage and in the developing neural tube and eye. Mouse Nat2 is widely believed to have an endogenous role distinct from xenobiotic metabolism, and polymorphisms in the human ortholog have been implicated in susceptibility to spina bifida and orofacial clefting. The developmental role of Nat2 was investigated using transgenic Nat2 knockout/lacZ knockin (Nat2 (tm1Esim)) mice.

View Article and Find Full Text PDF

Arylamine N-acetyltransferases (Nat) 1 and 2 catalyze the N-acetylation of aromatic amine and hydrazine drugs and carcinogens. After N-hydroxylation, they also catalyze the metabolic activation of N-hydroxy-arylamines via O-acetylation. Functional characterization of mouse Nat1 and Nat2 was investigated in an Nat2 knockout (KO) model and compared with the wild-type (WT) strain.

View Article and Find Full Text PDF

Murine arylamine N-acetyltransferase 2 (NAT2) is expressed in the developing heart and in the neural tube at the time of closure. Classically described as a xenobiotic metabolizing enzyme, there is increasing evidence for a distinct biological role for murine NAT2. We have characterized the expression of arylamine N-acetyltransferase 2 during cardiogenesis, mapping its expression in vivo, using a lacZ insertion deletion, and also in vitro, by measuring NAT2 enzyme activity.

View Article and Find Full Text PDF