Publications by authors named "Larissa Silva de Macedo"

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most significant neoplasms globally due to its high incidence and mortality, particularly among females. As a highly heterogeneous pathology, biomarkers are essential for characterizing specific tumors. Currently, several biological processes are well-described in the context of this neoplasm, such as alterations in BRCA1/2, HER, and pathways involving estrogen and progesterone hormone receptors.

View Article and Find Full Text PDF

Breast cancer risk factors include lifestyle, genetic-hormonal influences, and viral infections. Human papillomavirus (HPV), known primarily as the etiological agent of cervical cancer, also appears active in breast carcinogenesis, as evidenced in our study of 56 patients from northeastern Brazil. We assessed the clinical and sociodemographic characteristics, correlating them with various breast cancer tumor types.

View Article and Find Full Text PDF

Background And Purpose: The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as β-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells.

View Article and Find Full Text PDF

The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors.

View Article and Find Full Text PDF

In the last decades, technological advances for RNA manipulation enabled and expanded its application in vaccine development. This approach comprises synthetic single-stranded mRNA molecules that direct the translation of the antigen responsible for activating the desired immune response. The success of RNA vaccines depends on the delivery vehicle.

View Article and Find Full Text PDF
Article Synopsis
  • Improving antigen presentation is essential for effective immunization, and yeasts serve as both a protein production factory and a delivery system for antigens, with potential adjuvant effects.
  • Despite no current Zika virus outbreaks, ongoing vaccine development is critical due to the serious health risks associated with the virus, particularly its neurotropic effects.
  • The study shows that yeast-based vaccines with Zika virus epitopes enhance immune responses in mice, promoting the activation of T cells and significant antibody production while confirming the safety of these vaccine vehicles.
View Article and Find Full Text PDF

Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. However, they do not benefit patients with established tumors. Therefore, the development of therapeutic options for HPV-related malignancies is critical.

View Article and Find Full Text PDF

Gene immunization comprises mRNA and DNA vaccines, which stand out due to their simple design, maintenance, and high efficacy. Several studies indicate promising results in preclinical and clinical trials regarding immunization against ebola, human immunodeficiency virus (HIV), influenza, and human papillomavirus (HPV). The efficiency of nucleic acid vaccines has been highlighted in the fight against COVID-19 with unprecedented approval of their use in humans.

View Article and Find Full Text PDF

The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine against COVID-19 took place, and some vaccines have been approved for emergency use in several countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives by redirecting knowledge of other vaccines, and/or the development of new strategies using available tools, mainly in the areas of genomics and bioinformatics.

View Article and Find Full Text PDF

Yeasts are considered a useful system for the development of vaccines for human and veterinary health. Species such as Saccharomyces cerevisiae and Pichia pastoris have been used successfully as host organisms for the production of subunit vaccines. These organisms have been also explored as vaccine vehicles enabling the delivery of antigens such as proteins and nucleic acids.

View Article and Find Full Text PDF