Publications by authors named "Larissa Sambel"

Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate.

View Article and Find Full Text PDF

Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG (Cdc45•Mcm2-7•GINS) helicases at each origin. This requires several firing factors (including TopBP1, RecQL4, DONSON) whose exact roles remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Overexpression of the TGFβ pathway negatively affects hematopoietic stem and progenitor cells in Fanconi anemia, leading to issues with cell proliferation.
  • Disruption of Smad3, a key component of the TGFβ signaling pathway, alters the development and survival of Fancd2-deficient mouse models, impacting embryonic outcomes.
  • While some Fancd2-/-Smad3-/- double knockout mice survive through alternative signaling pathways, they face severe health issues, including genomic instability and poor blood cell formation.
View Article and Find Full Text PDF

To identify genes whose loss confers resistance to CHK1 inhibitors, we perform genome-wide CRISPR-Cas9 screens in non-small-cell lung cancer (NSCLC) cell lines treated with the CHK1 inhibitor prexasertib (CHK1i). Five of the top six hits of the screens, MYBL2 (B-MYB), LIN54, FOXM1, cyclin A2 (CCNA2), and CDC25B, are cell-cycle-regulated genes that contribute to entry into mitosis. Knockout of MMB-FOXM1 complex components LIN54 and FOXM1 reduce CHK1i-induced DNA replication stress markers and premature mitosis during Late S phase.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a chromosome instability syndrome with congenital abnormalities, cancer predisposition and bone marrow failure (BMF). Although hematopoietic stem and progenitor cell (HSPC) transplantation is the recommended therapy, new therapies are needed for FA patients without suitable donors. BMF in FA is caused, at least in part, by a hyperactive growth-suppressive transforming growth factor β (TGFβ) pathway, regulated by the TGFβ1, TGFβ2, and TGFβ3 ligands.

View Article and Find Full Text PDF
Article Synopsis
  • Bone marrow failure (BMF) in patients with Fanconi anemia (FA) is linked to faulty hematopoietic stem and progenitor cells (HSPCs), which are crucial for producing blood cells.
  • Researchers conducted single-cell transcriptome profiling of HSPCs from FA patients and found high expressions of genes related to p53, TGF-β, and notably, MYC.
  • Inhibiting MYC expression reduced the ability of FA HSPCs to proliferate and suggested that MYC may lead to increased DNA damage and diminished stem cell function, contributing to BMF symptoms in FA patients.
View Article and Find Full Text PDF

Purpose: PARP inhibitors are approved for the treatment of high-grade serous ovarian cancers (HGSOC). Therapeutic resistance, resulting from restoration of homologous recombination (HR) repair or replication fork stabilization, is a pressing clinical problem. We assessed the activity of prexasertib, a checkpoint kinase 1 (CHK1) inhibitor known to cause replication catastrophe, as monotherapy and in combination with the PARP inhibitor olaparib in preclinical models of HGSOC, including those with acquired PARP inhibitor resistance.

View Article and Find Full Text PDF

BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship.

View Article and Find Full Text PDF

The encephalomyocarditis virus (EMCV) 3C protease (3C) is one of a small number of viral proteins whose concentration is known to be regulated by the cellular ubiquitin-proteasome system. Here we report that the ubiquitin-conjugating enzyme UbcH7/UBE2L3 and the ubiquitin-protein ligase E6AP/UBE3A are components of a previously unknown EMCV 3C-polyubiquitylating pathway. Following the identification of UbcH7/UBE2L3 as a participant in 3C ubiquitylation, we purified a UbcH7-dependent 3C-ubiquitylating activity from mouse cells, which we identified as E6AP.

View Article and Find Full Text PDF