High internal phase emulsion (HIPE) was produced and stabilized using a novel antioxidant emulsifier formed by the complexation between sodium caseinate (SC) and quercetin (Q). Colloidal complexes, produced via an alkaline process, showed great ability to reduce the interfacial tension between oil-water phases, promoting stabilization of the HIPEs even at low concentrations (1.5% w/v in the aqueous fraction).
View Article and Find Full Text PDFElectrostatic complexes produced by interactions between polysaccharides have promising applications in the medical, pharmaceutical and food fields. In this light, for the development of such particles, microfluidics emerges as a promising technique in which processes occur at a strict laminar flow regime, allowing diffusion-dominated transport and particle formation in highly-controlled conditions. As a proof of concept, we compared bulk versus microfluidic (different devices simulating a range of residence times) processes for the production of electrostatic complexes of gellan with either chitosan (molecular weight ∼ 28 kDa) or hydrolyzed chitosan (molecular weight ∼ 3 kDa).
View Article and Find Full Text PDF