Advanced glycation end products (AGEs) play a pivotal role in the aging process, regarded as a hallmark of aging. Despite their significance, the absence of adequate monitoring tools has hindered the exploration of the relationship between AGEs and aging. Here, we present a novel AGE-selective probe, AGO, for the first time.
View Article and Find Full Text PDFLiver cancer is one of the leading causes of cancer-related deaths, with a significant increase in incidence worldwide. Novel therapies are needed to address this unmet clinical need. Indocyanine green (ICG) is a broadly used fluorescence-guided surgery (FGS) agent for liver tumor resection and has significant potential for conversion to a targeted therapy.
View Article and Find Full Text PDFCell labelling using a small fluorescent probe is an important technique in biomedical sciences. We previously developed a biocompatible and membrane-permeable probe, CO-1, which has low nonspecific binding affinity towards nontarget molecules. Although this background-free tame probe has been utilized for labelling of various intracellular biomolecules in live cells, the probes' backgroung-free staining mechanism was not fully understood.
View Article and Find Full Text PDFCDy1 is a powerful tool to distingusih embryonic stem cells for reprogramming studies and regeneration medicine. However, the stem cell selectivity mechanism of CDy1 has not been fully understood. Here, we report ALDH2 and ABCB1 as the molecular targets of CDy1, elucidated by live-cell affinity-matrix and ABC transporter CRISPRa library screening.
View Article and Find Full Text PDFHuman neutrophils are the most abundant leukocytes and have been considered as the first line of defence in the innate immune system. Selective imaging of live neutrophils will facilitate the in situ study of neutrophils in infection or inflammation events as well as clinical diagnosis. However, small-molecule-based probes for the discrimination of live neutrophils among different granulocytes in human blood have yet to be reported.
View Article and Find Full Text PDFBeta cells assume a fundamental role in maintaining blood glucose homeostasis through the secretion of insulin, which is contingent on both beta cell mass and function, in response to elevated blood glucose levels or secretagogues. For this reason, evaluating beta cell mass and function, as well as scrutinizing how they change over time in a diabetic state, are essential prerequisites in elucidating diabetes pathophysiology. Current clinical methods to measure human beta cell mass and/or function are largely lacking, indirect and sub-optimal, highlighting the continued need for noninvasive in vivo beta cell imaging technologies such as optical imaging techniques.
View Article and Find Full Text PDF