Publications by authors named "Larissa Khoutorova"

Background: In the United States, traumatic brain injury (TBI) contributes significantly to mortality and morbidity. Elovanoids (ELVs), a novel class of homeostatic lipid mediators we recently discovered and characterized, have demonstrated neuroprotection in experimental stroke models but have never been tested after TBI.

Methods: A moderate fluid-percussion injury (FPI) model was used on male rats that were treated with ELVs by intravenous (IV) or intranasal (IN) delivery.

View Article and Find Full Text PDF

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6.

View Article and Find Full Text PDF

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke.

View Article and Find Full Text PDF

Objective: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated.

Materials And Methods: Male SD rats were subjected to 2 hours of MCAo.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways.

View Article and Find Full Text PDF

Objective: Acute ischemic stroke triggers complex neurovascular, neuroinflammatory, and synaptic alterations. This study explores whether blocking pro-inflammatory platelet-activating factor receptor (PAF-R) plus selected docosanoids after middle cerebral artery occlusion (MCAo) would lead to neurological recovery. The following small molecules were investigated: (a) LAU-0901, a PAF-R antagonist that blocks pro-inflammatory signaling; and (b) derivatives of docosahexaenoic acid (DHA), neuroprotectin D1 (NPD1), and aspirin-triggered NPD1 (AT-NPD1), which activates cell survival pathways and are exert potent anti-inflammatory activity in the brain.

View Article and Find Full Text PDF

Aims: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a secretory neurotrophic factor protein that promotes repair after neuronal injury. The microglia cell surface receptor (triggering receptor expressed on myeloid cells-2; TREM2) regulates the production of pro- and antiinflammatory mediators after stroke. Here, we study MANF and TREM2 expression after middle cerebral artery occlusion (MCAo) and explore if docosahexaenoic acid (DHA) treatment exerts a potentiating effect.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) and neuroprotectin D1 (NPD1) are neuroprotective after experimental ischemic stroke. To explore underlying mechanisms, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo) and treated with DHA (5 mg/kg, IV) or NPD1 (5 μg/per rat, ICV) and vehicles 1 h after. Neuro-behavioral assessments was conducted on days 1, 2, and 3, and on week 1, 2, 3, or 4.

View Article and Find Full Text PDF

We report the characterization of a novel class of lipid mediators termed elovanoids (ELVs) (ELV-N32 and ELV-N34), which are dihydroxylated derivatives of 32:6n3 and 34:6n3, respectively. The precursors of ELVs are made by elongation of a 22:6n3 fatty acid and catalyzed by ELOVL4 (elongation of very-long-chain fatty acids-4). The structure and stereochemistry of ELVs were established using synthetic compounds produced by stereocontrolled total synthesis.

View Article and Find Full Text PDF

Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS.

View Article and Find Full Text PDF

Background: Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to edema formation, secondary brain injury and poor neurological outcomes. Recently, we have shown that docosahexaenoic acid (DHA) improves functional and histological outcomes following experimental stroke. However, little is known about the effect of DHA on BBB dysfunction after cerebral ischemia-reperfusion injury.

View Article and Find Full Text PDF

Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo.

View Article and Find Full Text PDF

Docosahexaenoic acid complexed to albumin (DHA-Alb) is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo), but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270-330 g) underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo.

View Article and Find Full Text PDF

Recently we have shown that docosahexaenoic acid complexed to albumin (DHA-Alb) is neuroprotective after experimental stroke in young rats. The purpose of this study was to determine whether treatment with DHA-Alb would be protective in aged rats after focal cerebral ischemia. Isoflurane/nitrous oxide-anesthetized normothermic (brain temperature 36-36.

View Article and Find Full Text PDF

Background: Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.

Methods And Results: Rats underwent 2 h of middle cerebral artery occlusion (MCAo).

View Article and Find Full Text PDF
Article Synopsis
  • DHA combined with lower concentrations of human serum albumin (Alb) shows potential neuroprotection in a rat stroke model, successfully extending the treatment window beyond the typical 5 hours post-stroke.
  • Rats treated with DHA-Alb at moderate doses demonstrated significantly improved neurological scores and reduced brain damage compared to those given only Alb, indicating a more effective treatment method for stroke recovery.
  • These findings highlight the clinical potential of DHA-Alb complexes in enhancing neurobehavioral outcomes after stroke, suggesting a new approach to therapeutic strategies in stroke management.
View Article and Find Full Text PDF

Acute ischemic stroke triggers complex neurovascular, neuroinflammatory and synaptic alterations. Aspirin and docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, have beneficial effects on cerebrovascular diseases. DHA is the precursor of neuroprotectin D1 (NPD1), which downregulates apoptosis and, in turn, promotes cell survival.

View Article and Find Full Text PDF

Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach.

View Article and Find Full Text PDF

We examined the neuroprotective efficacy of docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, in acute ischemic stroke; studied the therapeutic window; and investigated whether DHA administration after an ischemic stroke is able to salvage the penumbra. In each series described below, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo). In series 1, DHA or saline was administered i.

View Article and Find Full Text PDF

Background And Purpose: Docosahexaenoic acid (DHA; 22:6n-3), an omega-3 essential fatty acid family member, is the precursor of neuroprotectin D1, which downregulates apoptosis and, in turn, promotes cell survival. This study was conducted to assess whether DHA would show neuroprotective efficacy when systemically administered in different doses after middle cerebral artery occlusion (MCAo) in rats.

Methods: Sprague-Dawley rats were anesthetized with isoflurane and subjected to 2 hour of MCAo.

View Article and Find Full Text PDF

Human chorionic gonadotropin (hCG) promotes proliferation of endogenous neural stem cells, and erythropoietin (EPO) promotes differentiation of these cells into neural stem cells. The current study examined effects of sequential administration of these two compounds, initiated 24 h after stroke. At that time, rats were randomized into four treatment groups: hCG+EPO (3 IM doses hCG over 5 days, followed by 3 IV doses EPO over 3 days), hCG+Saline using the same schedule, Saline+EPO using the same schedule, or neither drug (Saline+Saline).

View Article and Find Full Text PDF

LAU-0901, a novel platelet-activating factor (PAF) receptor antagonist, is highly neuroprotective in a rodent model of cerebral ischemia. This study was conducted to establish whether the neuroprotection induced by LAU-0901 persists with chronic survival. Male Sprague-Dawley rats were anesthetized with isoflurane and subjected to 2 h of temporary middle cerebral artery occlusion (MCAo) induced by means of a poly-L-lisine-coated intraluminal nylon suture.

View Article and Find Full Text PDF

Platelet-activating factor (PAF) is a bioactive phospholipid that accumulates during ischemia-reperfusion and is involved in the activation of platelets, neutrophils, and pro-inflammatory signaling. PAF has been suggested to enhance brain ischemia-reperfusion damage. LAU-0901, a novel PAF receptor antagonist, was examined in models of focal cerebral ischemia in rats and mice.

View Article and Find Full Text PDF

Background And Purpose: Darbepoetin alfa is a novel erythropoiesis-stimulating protein developed for treating anemia. In animal models, exogenous recombinant human erythropoietin has been reported to be beneficial in treating experimental cerebral ischemia. In this study, we determined whether darbepoetin alfa would protect in a rat model of transient focal cerebral ischemia.

View Article and Find Full Text PDF

Stilbazulenyl nitrone (STAZN) is a potent lipophilic second-generation azulenyl nitrone antioxidant, which is highly neuroprotective in rodent models of cerebral ischemia and trauma. This study was conducted to establish whether the neuroprotection induced by STAZN persists with chronic survival and to characterize STAZN's pharmacokinetics. Physiologically regulated rats received a 2-h middle cerebral artery occlusion by intraluminal suture and were treated with either STAZN [four 0.

View Article and Find Full Text PDF