Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (P<0.
View Article and Find Full Text PDFConsumption of a high-fat diet (HFD) by rabbits results in increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) within 1 wk. Here, we determined how early this activation occurred and whether it was related to changes in cardiovascular and neural 24-h rhythms. Rabbits were meal-fed a HFD for 3 wks, then a normal-fat diet (NFD) for 1 wk.
View Article and Find Full Text PDFHypertension and elevated sympathetic drive result from consumption of a high-calorie diet and deposition of abdominal fat, but the etiology and temporal characteristics are unknown. Rabbits instrumented for telemetric recording of arterial pressure and renal sympathetic nerve activity (RSNA) were fed a high-fat diet for 3 weeks then control diet for 1 week or control diet for 4 weeks. Baroreflexes and responses to air-jet stress and hypoxia were determined weekly.
View Article and Find Full Text PDFThe activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin.
View Article and Find Full Text PDF